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Abstract

The recently-introduced OM3 aggregation operators fulfill three appealing prop-
erties: they are simultaneously minitive, maxitive, and modular. Among the in-
stances of OM3 operators we find e.g. OWMax and OWMin operators, the famous
Hirsch h-index and all its natural generalizations.

In this paper the basic axiomatic and probabilistic properties of extended,
i.e. in an arity-dependent setting, OM3 aggregation operators are studied. We
illustrate the difficulties one is inevitably faced with when trying to combine the
quality and quantity of numeric items into a single number. The discussion on
such aggregation methods is particularly important in the information resources
producers assessment problem, which aims to reduce the negative effects of infor-
mation overload. It turns out that the Hirsch-like indices of impact do not fulfill a
set of very important properties, which puts the sensibility of their practical usage
into question. Moreover, thanks to the probabilistic analysis of the operators in
an i.i.d. model, we may better understand the relationship between the aggregated
items’ quality and their producers’ productivity.
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1. Introduction

Informetrics is an active and important research field that deals with measur-
able aspects of computer and information science. Informetric methods aim to:

• accurately model and qualitatively explain various information processes-
related phenomena (like information flow or growth in time),

• reliably evaluate the quality or measure the performance of information
items and their producers, and

• efficiently manage digital libraries or information storage centers.

Companies, governments, web bots and individuals all over the world generate
huge amounts of data of various kinds. It is known that, for example, the World
Wide Web size grows exponentially. The number of on-line social networking
services accounts often exceeds hundreds of millions (e.g. Facebook: 1.1 billion,
Twitter: 0.5 billion). Each active user is a “producer” of new information items
that are “assessed” by the members of the on-line community (cf. e.g. “Like”,
“Share”, or “Follow” buttons).

A similar behavior may be observed in the system of Java, Python, or R soft-
ware packages/libraries. For instance, the number of items on the CRAN (Com-
prehensive R Archive Network) repository reached over 5270 items in March
2014, and this number is expected to double within the next 3–4 years.

What is more, one may find the same pattern in digital libraries. The number
of new scholarly articles also grows at a rapid pace. Elsevier’s Scopus currently
archives over 53.3 million items, of which ∼2.5 million are those added in the
year 2013. Of course, the true number of papers ever published is much higher,
as none of the databases has full content coverage.

It is evident that each user (either a human or a virtual one) of the above-
mentioned data banks is likely to suffer from a so-called information overload.
This implies an urgent need for development of:

• valid methods for automated quality management (e.g. that may indicate
which items are worth being examined),

• multicriteria decision making techniques (e.g. in order to react effectively
to some events), and most importantly:

• new ways to synthetically express various characteristics of information
processes being studied (e.g. so that they may be understood and/or orga-
nized in an effective way).
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Among such methods one may find e.g. the famous Hirsch’s h-index [32] or other
so-called informetric indices of impact, cf. [2], which usage and recognition is –
quite unfortunately – often reduced to the domain of scientometrics, see [16] for
one of a few notable exceptions to this rule. Even though such tools are defined
in a very simple – if not trivial at a first glance – way, they are currently subjects
of very intensive, yet still far from being advanced, theoretical research at the
intersection of computer science, applied mathematics and operational research.
It is because a satisfactory answer to questions like what in fact do they measure,
where they can be applied, what are their formal properties, and so on, has not
been provided yet.

Principally, these tools – despite the controversies about their usage in partic-
ular applications, like in the evaluation of science – are instances of very theo-
retically interesting mathematical objects. For example, the above-mentioned h-
index is just one of uncountably many so-called aggregation operators, cf. [6, 29],
i.e. functions that map the space of vectors with elements in I into I := [a, b] or, in
the language of probability, sample statistics, understood as functions of random
variables.

The investigation of their foundations, properties and limitations is thus a very
important task from the theoretical viewpoint. The classical approach in the theory
of aggregation deals with the analysis and construction of functions that synthe-
size a numeric vector into a single number representing its “typical” value or some
kind of “central tendency” of the given data object, see e.g. [29–31]. Most often,
a domain of vectors of fixed size is assumed. In the discussed case, however, such
a simplification is not valid, cf. also [26].

Let P = {p1, . . . , pk} be a set of k (abstract) producers. The i-th producer
outputs ni (abstract) products. Additionally, each product has been given some
kind of quantitative valuation, rating, or assessment, e.g. concerning its overall
quality. Consequently, in the most basic model, the state of pi may be described
by a sequence x(i) =

(
x(i)

1 , . . . , x
(i)
ni

)
with elements in I, most often with I = [0,∞],

see Fig. 1 for an illustration. Table 1 lists some typical, yet highly interesting
instances of such a situation, cf. e.g. [16, 23, 33]. The majority of them concerns
the producers of information resources of various kinds.

Most importantly, one should note that the numbers of products may vary
from producer to producer. The main aim of the Producers Assessment Problem
(PAP, cf. [23]) is to construct methods for quantitative (numerical) assessment of
producers. These mathematical or computational tools must necessarily meet only
some mild assumptions. They shall somehow take into account the two following
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Figure 1: Producers Assessment Problem.

aspects of a producer’s widely-conceived quality:

1. its ability to output highly-valuated products, and
2. its overall productivity.

Moreover, it is often assumed that an increment in a product’s quality, or an ad-
dition (concatenation) of a new product to the sequence, must not result in a de-
crease in the producer’s rating. These properties are called nondecreasingness and
arity-monotonicity, respectively.

In this paper we postulate a list of important axiomatic properties that aggre-
gation operators for PAP should possess. The discussion is focused on a recently-
introduced class of aggregation operators called OM3, see [9, 18]. This family of
functions is particularly interesting and worth being examined, as each OM3 op-
erator fulfills three important and appealing properties: maxitivity, minitivity, and
modularity, which generalizes additivity. Moreover, we will see that it naturally
generalizes many Hirsch-based indices of impact and that they are connected with
the universal [35] and – in some cases – the Sugeno integral [46].
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Table 1: Typical instances of the Producer Assessment Problem (PAP).
Producer Products Rating method
R package author R packages Number of dependencies
Developer team Python packages Number of namespace imports from other projects
Web server Web pages Number of targeting web-links or Page Rank
Web service server JSON/XML-RPC methods Number of remote procedure calls
Developer team Code repository (git, svn, etc.) Number of commits
Publisher On-line document Number of downloads
Social networking profile Posts Number of “tweets” or “likes”
StackOverflow users Answers to other users’ questions Up-votes
YouTube channels Videos Number of views
Digital library Subscriber Number of accesses
Scientist Scientific articles Number of citations
Scientific institute Scientists The h-index
Factory Model-ranges of products Sale results
Factory product Supplied lots Number of items without defects
Artist Paintings Auction price

Moreover, even though aggregation operators also appear in probability (un-
der a name “statistics”), very rarely their stochastic properties, even in most basic
i.i.d. models, are discussed. As such results are important both for theory as well
as for practice, the OM3 operators will also be studied from this perspective. Note
that some preliminary results have already been obtained (via Monte Carlo sim-
ulation studies) in [10] and for a particular subclass of OM3 in [22]. However,
we shall observe that in an arity-monotonic setting these functions may behave
in a nonstandard way. The new results presented in this paper may help to better
understand the relationship between a producer’s ability to output valuable goods
and its productivity.

The paper is organized as follows. In the next section, the definition of the
OM3 operators is presented and the most notable instances of this class of aggre-
gation operators are introduced. In Sec. 3 we recall existing and also postulate
new axiomatic properties useful in the Producers Assessment Problem, and char-
acterize OM3 operators fulfilling them. Basic probabilistic properties, also in an
arity-dependent setting, of OM3 operators are discussed in Sec. 4. Finally, Sec. 5
concludes the paper and indicates some open problems for future work.
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2. The OM3 aggregation operators

From now on let I = [0, b] for some b > 0, possibly with b = ∞. Moreover,
let I0,1,... =

⋃∞
n=0 In, with convention I0 = {∅}, where ∅ denotes a 0-tuple (i.e. an

empty vector, ()). In other words, I0,1,... is the set of vectors of arbitrary length with
elements in I. Additionally, let [n] = {1, 2, . . . , n} and (n ∗ x) = (x, x, . . . , x) ∈ In.

Let us introduce the following class of (extended, i.e. defined for any sample
size n) aggregation operators. For each such a function F : I0,1,... → I we will
assume the lower bound F(∅) = 0.

Definition 1 (see [9, 18]). The OM3 operator M4,w(x) generated by a sequence
of mappings w = (w1,w2, . . . ), wi : I → I, and a triangle of coefficients 4 =

(ci,n)i∈[n],n∈N, ci,n ∈ I, is given by

M4,w(x) =

n∨
i=1

wn(x(n−i+1)) ∧ ci,n,

where x ∈ In and x(i) denotes the i-th smallest value in x.

It is easily seen that each OM3 operator is symmetric, i.e. its value is indepen-
dent of the ordering of elements in x, cf. [29, Proposition 2.34]. As most often in
the aggregation theory we assume that a given aggregation operator is nondecreas-
ing in each variable, the following result is worth recalling, see [9, Lemma 1] for
the proof. Here, if necessary, we apply the convention that wn(∞) = limx→∞ wn(x).

Lemma 2 (Reduction; see [9]). M4,w is nondecreasing in each variable if and
only if there exist w′ = (w′1,w

′
2, . . . ), w′i : I → I, and a triangle of coefficients

O = (c′i,n)i∈[n],n∈N satisfying the following conditions:

(i) (∀n) w′n is nondecreasing,
(ii) (∀n) c′1,n ≤ c′2,n ≤ · · · ≤ c′n,n,

(iii) (∀n) 0 ≤ w′n(0) ≤ c′1,n,
(iv) (∀n) w′n(b) = c′n,n ≤ b,

such that (∀x) M4,w(x) = MO,w′(x).

Please be advised that the above “reduction” lemma implies that one may
consider nondecreasing OM3 operators – with no loss in generality – only in the
form provided above. In such a case, M4,w is a classical aggregation function for
n > 1 if and only if wn(0) = 0 and wn(b) = b, and for n = 1 iff wn(x) = x,
see [29]. Also, if wn(x) = x, then an OM3 operator is idempotent, see also Sec. 3.
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However, we do not necessarily assume these conditions in this paper, as in the
PAP case they are too restrictive: for fixed n and any x ∈ In we only necessarily
have M4,w(x) ∈ [wn(0),wn(b)].

The name OM3 comes from the three important properties that these aggre-
gation operators fulfill. In [18] it has been shown that each such an operator

(and no other) is ordered (symmetric) minitive, i.e. (∀n) (∀x, y ∈ In) F(x
S
∧

y) = F(x) ∧ F(y), maxitive, i.e. (∀n) (∀x, y ∈ In) F(x
S
∨ y) = F(x) ∨ F(y),

and modular, i.e. (∀n) (∀x, y ∈ In) F(x
S
∨ y) + F(x

S
∧ y) = F(x) + F(y), where

x
S
∨ y = (x(1) ∨ y(1), . . . , x(n) ∨ y(n)) and x

S
∧ y = (x(1) ∧ y(1), . . . , x(n) ∧ y(n)). This is

because for all x ∈ I0,1,... it holds:

M4,w(x) =

n∨
i=1

wn(x(n−i+1)) ∧ ci,n

=

n∧
i=1

(wn(x(n−i+1)) ∨ ci−1,n) ∧ cn,n

=

n∑
i=1

((
wn(x(n−i+1)) ∨ ci−1,n

)
∧ ci,n − ci−1,n

)
,

with convention c0,n = 0, see [18, Theorem 20] for the proof.
Remark 3. Some OM3 operators correspond to the very general family of univer-
sal integrals, which were defined in [35] (see also [24, 47] and [4, 8] for other uses
of fuzzy measures and integrals in bibliometrics).

Fix n > 0. Consider a measurable space ([n], 2[n]), where 2[n] denotes the
power set of {1, . . . , n}. Additionally, let µ : 2[n] → I be a discrete monotone
measure, i.e. a function such that µ(∅) = 0, µ(In) > 0, and for which for all
U,V ∈ 2[n] it holds U ⊆ V =⇒ µ(U) ≤ µ(V). Note that µ is not necessarily
additive.

Additionally, for any x ∈ In let h(µ,x)(t) = µ
({

i : x(n−i+1) ≥ t
})

, t ∈ I, i.e. the
measure of the t-level set of x. Do note that as in fact we only apply µ on subsets
like U = {1, 2, . . . , k}, with no loss in generality we may assume that µ is generated
by a nondecreasing function of the counting measure, µ(U) = ϕ(|U |) = ϕ(k), with
k = 0 case corresponding to ∅, i.e. ϕ : {0, 1, . . . , n} → I. Thus, µ is a symmetric
measure.

First of all, it may be observed that the Sugeno integral [46] given by S(µ, x) =

supt∈I

{
t ∧ h(µ,x)(t)

}
is equivalent to Mw,4(x) =

∨n
i=1 x(n−i+1) ∧ ϕ(i). Thus, changing

the coefficients from 4 corresponds to transforming the monotone measure µ.
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More generally, it may be shown that we haveI(µ, x) = supt∈I

{
wn(t) ∧ h(µ,x)(t)

}
=∨n

i=1 wn(x(n−i+1)) ∧ ϕ(i). If wn(0) = 0 and wn(b) = b, then such a function is a uni-
versal integral generated by a pseudo-multiplication operator ⊗ (see [35]) such
that u ⊗ v = wn(u) ∧ v, and of course generalizes the Sugeno integral. �

It turns out that in some cases an OM3 operator may be written in different,
often simpler, forms.

Lemma 4. Let M4,w be a nondecreasing OM3 operator with continuous wn for all
n. Then M4,w(x) = wn

(∨n
i=1 x(n−i+1)∧c′i,n

)
, where c′i,n = w−1

n (ci,n) = sup {x : wn(x) ≤ ci,n}.

Proof. Without loss of generality let w and 4 be of the form given in Lemma 2.
Fix n ≥ 1 and x ∈ In. Moreover, let i be such that Mw,4(x) = wn(x(n−i+1)) ∧ ci,n.

Let y ∈ range wn = [wn(0),wn(b)]. Take any y ∈ range wn and let S y = {x :
wn(x) = y}. This implies wn(w−1

n (y)) = wn(sup S y) = wn(max S y) = y, as S y is a
closed set under continuity of wn.

Additionally, note that under our assumptions c j,n ∈ range wn for all j. Thus,
by monotonicity of wn implying the fact that for all d, e it holds wn(d∧e) = wn(d)∧
wn(e), we have wn(x(n−i+1))∧ci,n = wn(x(n−i+1))∧wn(w−1

n (ci,n)) = wn

(
x(n−i+1) ∧ w−1

n (ci,n)
)
,

and the proof is complete.

Remark 5. On the other hand, if wn is not continuous, then a counterexample for
the antecedent of the above theorem may easily be constructed. For instance, let
w1(x) = bxc, c1,1 = 0.5, and x = (1.5). Then w1(1.5) ∧ 0.5 = 1 ∧ 0.5 = 0.5 and
w1

(
w−1

1 (w1(1.5)) ∧ w−1
1 (0.5)

)
= w1(1 ∧ 1) = 1. �

Moreover, further on we will need the following auxiliary result. It is a slightly
generalized version of [10, Proposition 1].

Lemma 6. Let M4,w(x) =
∨n

i=1 wn(x(n−i+1)) ∧ ci,n, where (∀n) wn : I → I is non-
decreasing and c1,n < · · · < cn,n. Then M4,w(x) is a nondecreasing OM3 opera-
tor if and only if for any n there exists a strictly increasing function fn : I → I
and a nondecreasing function w′n : I → I, such that for all x ∈ In it holds
M4,w(x) = fn

(∨n
i=1

(
w′n(x(n−i+1)) ∧ i

))
.

Proof. (=⇒) Fix n. Let fn be a piecewise linear continuous function such that
we have fn(i) = ci,n for all i ∈ [n]. It is obvious that fn is a strictly increas-
ing function, since the sequence (ci,n)i∈[n] is strictly increasing, and fn is onto I.
Hence, there exists its (also strictly increasing) inverse, f−1

n , for which we have
f−1
n (ci,n) = i. Thus, it holds f−1

n
(
M4,w(x)

)
=

∨n
i=1

(
f−1
n (wn(x(n−i+1))) ∧ f−1

n (ci)
)

=
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∨n
i=1

(
(f−1

n ◦ wn)(x(n−i+1)) ∧ i
)

for any x ∈ In. We may therefore set w′n = f−1
n ◦ wn

and we have fn
(∨n

i=1
(
w′n(x(n−i+1)) ∧ i

))
= Mw,4(x).

(⇐=) We have M4,w(x) = fn
(∨n

i=1
(
w′n(x(n−i+1)) ∧ i

))
=

∨n
i=1(fn ◦w′n)(x(n−i+1))∧ fn(i).

It is easily seen that wn := fn ◦ w′n is nondecreasing (since fn is strictly increasing
and w′n is nondecreasing) and ci,n := fn(i) < fn(i + 1) = ci+1,n. Please note that for
x, y ∈ In such that x ≤ y we have (∀i) wn(x(n−i+1)) ∧ ci,n ≤ wn(y(n−i+1)) ∧ ci,n. Thus,
M4,w(x) ≤ M4,w(y), which completes the proof.

Remark 7. Please note that the assumption c1,n < c2,n < · · · < cn,n in Lemma 6
cannot be weakened. For example, let us consider n = 3 and an OM3 operator
given by M4,w(x) =

∨n
i=1 x(n−i+1) ∧ ci,n, with c1,3 = c2,3 = 1 and c3,3 = 2.

We have M4,w(0, 0, 0) = 0. Thus, fn(w′n(0)) ∧ fn(3) = 0, and as fn(3) > 0, it
follows that fn(w′n(0)) = 0.

Moreover, M4,w(1.5, 0, 0) = M4,w(1.5, 1.5, 0) = 1. Consequently, (fn(w′n(1.5))∧
fn(1)) ∨ (fn(w′n(0)) ∧ fn(3)) = fn(w′n(1.5)) ∧ fn(1) = 1 and (fn(w′n(1.5)) ∧ fn(1)) ∨
(fn(w′n(0))∧ fn(3)) = fn(w′n(1.5))∧ fn(2) = 1. This gives fn(w′n(1.5)) = 1 and fn(1) ≥
1, since fn(1) < fn(2). However, M4,w(1.5, 1.5, 1.5) = 1.5 implies fn(w′n(1.5)) ∧
fn(3) = 1 ∧ fn(3). Therefore, we get 1 ∧ fn(3) , 1.5 and, as fn(3) > 1, we obtain a
contradiction. �

We easily see that special cases of the OM3 operators include OWMax/OWMin
[13, 14], all order statistics, as well as all transformations of OWMax operators
concordant with Theorem 4.

Also, considering the PAP context where x represents quality measures of
products output by some producer and I = [0,∞], we may obtain e.g. the total
number of products (if wn(x) = n for all x and c1,n = · · · = cn,n = n) and the total
number of products of non-zero quality (if wn(0) = 0 and wn(x) = ∞ for all x > 0
and ci,n = i). Moreover, the famous h-index by J.E. Hirsch [32], the generalized
h-index given by H̃(x) =

∨n
i=1 x(n−i+1)∧ i (an OM3 operator of perhaps the simplest

possible form), as well as their many modifications, like the h(2)-index [36] and
other ones similar to those defined in [12], also fall into this class:

Lemma 8. Let w : I→ I be a nondecreasing function. Then

Hw(x) = max{i = 0, 1, . . . , n : w(x(n−i+1)) ≥ i},

with convention x(n+1) = 0, is a nondecreasing OM3 operator.
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Proof. Fix n, x ∈ In and let j = Hw(x) ∈ {0, 1, . . . , n}. If j > 0, then it is easily
seen that j = bw(x(n− j+1))c ∧ j, as w(x(n− j+1)) ≥ j. Moreover, for all i < j by
the nondecreasingness of w we have bw(x(n−i+1))c ∧ i < j and for i > j it holds
bw(x(n−i+1))c ∧ i ≤ j as otherwise j would not be as defined. On the other hand, if
j = 0 then surely w(x(n)) < 1 and we have bw(x(i))c for all i.

Thus, Hw(x) =
∨n

i=1bw(x(n−i+1))c ∧ i, i.e. it is a nondecreasing OM3 operator
with wn = w and ci,n = i for all i, n.

What is even more, by applying some input vector transformations we may
obtain other indices of impact, like the g-index [15], defined as G(x) = max{i =

0, 1, . . . , n :
∑i

j=1 x(n− j+1) ≤ i2}, and w-index [50], given by W(x) = max{i =

0, 1, . . . , n : x(n−i+1) ≤ n − i + 1}. It is because for any nonincreasingly sorted x we
have:

G(x) = Mw,4

(
0 ∨ cummin

(
cumsum(x) − (12, 22, . . . , n2) + (1, 2, . . . , n)

))
,

W(x) = Mw,4

(
cummin

(
x + (1, 2, . . . , n) − 1

))
,

where wn(x) = bxc, ci,n = i for all i, n, cummin, cumsum : I0,1,... → I0,1,... denote the
symmetrized cumulative minimum and sum, respectively, i.e.:

cummin(x) = (x(n), x(n) ∧ x(n−1), x(n) ∧ x(n−1) ∧ x(n−2), . . . ),
cumsum(x) = (x(n), x(n) + x(n−1), x(n) + x(n−1) + x(n−2), . . . ),

and operations +, −, and ∨ applied on vectors are performed element-wise. Both
facts have been proven in [24].
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3. Axiomatic properties of OM3 operators

In this section we discuss the most important properties that are of particular
interest in the Producers Assessment Problem framework. Let us begin the review
of notable axiomatic properties with conditions that do not depend on input vec-
tor’s arities. In other words, the following properties assume that only vectors of
the same lengths are considered at a time, see [21] for discussion.

3.1. Notable arity-free properties
We have already considered a few arity-free properties: symmetry, symmetric

modularity, minitivity, maxitivity, which are fulfilled by all OM3 operators, and
finally nondecreasingness in Lemma 2. Nondecreasingness of an aggregation op-
erator is a sine qua non condition for the majority of practical applications. Some-
times, however, one may require a stronger condition guaranteeing the sensitivity
of a function for a change of an input vector’s elements. First of all, one may wish
that an aggregation operator’s value always increases its value on any possible in-
put vector’s element incrementation. However, it turns out that for some vectors
it is always impossible.

Proposition 9. Let w and 4 be of the form given in Lemma 2. Then M4,w is surely
not strictly increasing (sensitive, cf. [29, Proposition 2.4]), i.e. there always exist
n, x, y ∈ In, x ≤ y and x , y (denoted x <1 y), such that M4,w(x) ≮ M4,w(y).

Proof. Fix n and take any x, y ∈ I, x < y ≤ b. Recall that (n∗x) = (x, x, . . . , x) ∈ In.
We have M4,w(x, (n−1)∗0) = wn(x)∧c1,n and M4,w(y, (n−1)∗0) = wn(y)∧c1,n. Thus,
M4,w(x, (n−1)∗0) < M4,w(y, (n−1)∗0) if and only if c1,n = wn(b) and wn(x) < wn(y).
However, now we have wn(x) = M4,w(x, (n − 1) ∗ 0) = M4,w(n ∗ x) = wn(x), and
the proof is complete.

Thus, we may be interested in a weaker form of sensitivity, which may be
formulated as follows.

Proposition 10. Let w and 4 be of the form given in Lemma 2. Then M4,w is
weak-sensitive, i.e. for all n, x, y ∈ In if x < y, then M4,w(x) < M4,w(y), if and
only if (∀n) wn is strictly increasing and (∀x ∈ (0, b)) there exists i ∈ [n] such that
wn(x) ∈ [ci−1,n, ci,n), with convention c0,n = 0.
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Proof. (=⇒) Fix n. First note that if there exist x < x′ such that wn(x) = wn(x′)
then wn(x) = wn(x) ∧ cn,n = M4,w(n ∗ x) = M4,w(n ∗ x′) = wn(x′) ∧ cn,n = wn(x′), a
contradiction. Thus, wn must necessarily be strictly increasing.

Take any 0 < x < y < b and assume that there exists i < n such that wn(x) < ci,n

and wn(y) ≥ ci,n. Then for all ε > 0 we have M4,w(i ∗ y, (n − i) ∗ 0) = ci,n =

M4,w(i ∗ (y + ε), (n − i) ∗ x), which again leads to a contradiction. It implies that
for every i it either holds (∀x ∈ (0, b)) wn(x) < ci,n or (∀x ∈ (0, b)) wn(x) ≥ ci,n.

(⇐=) Fix n and take any x, y ∈ In such that x < y. If x = (n ∗ 0), then wn(y(1)) >
wn(0) = M4,w(x), cn,n = wn(b) > wn(0), and the property of our interest indeed
holds.

Let x , (n ∗ 0). We have two cases:

• if there exists j such that M4,w(x) = c j,n, then wn(x(n− j+1)) ≥ c j,n and x(1) = 0.
But here y(1) > 0, cn,n > wn(y(1)) > c j,n and thus M4,w(x) < M4,w(y);

• if there exists j such that M4,w(x) = wn(x(n− j+1)), then wn(x(n− j+1)) < c j,n and
thus wn(x(n− j+1)) < wn(y(n− j+1)), which implies M4,w(x) < M4,w(y).

Therefore, the proof is complete.

Note that if wn is continuous, then the weak sensitivity property holds if either
ci,n = wn(0) or ci,n = wn(b). It may be seen that e.g. all sample quantiles do obey
this property.

Continuity in some cases may be not only important, but may also lead to
significant simplifications in the form of 4 and w.

Proposition 11. Let w and 4 be of the form given in Lemma 2. Then M4,w is
continuous, if and only if (∀n) wn is continuous.

Proof. (⇐=) Trivial.

(=⇒) Assume that for some n the function wn is discontinuous at x∗, i.e. there exist
a sequence (xm)m∈N such that limm→∞ xm = x∗ and limxm→x∗ wn(xm) , wn(x∗). Addi-
tionally, let (x(m))m∈N be such that x(m) = (n∗ xm). We have limm→∞ x(m) = x∗ = (n∗
x∗). However, limx(m)→x∗ M4,w(x(m)) = limx(m)→x∗ M4,w(n ∗ xm) = limx(m)→x∗ wn(xm) ∧
cn,n = limx(m)→x∗ wn(xm) , wn(x∗) = M4,w(x∗).

Note that according to [29, Proposition 2.8], continuity of a nondecreasing
function M4,w is equivalent to its continuity in each variable.
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3.2. Notable arity-dependent properties
Up to now we have not discussed yet any properties that take into account the

relationships between functions’ values for vectors of different arities. As the very
nature of the Producers Assessment Problem is such that each agent may output
an arbitrary number of products, the following conditions are worth-noting.

Firstly, we should stress that arity-monotonicity is most often treated as the
most fundamental condition in the PAP framework, see [12, 17, 21, 23, 40–44, 49–
51] and cf. [34, 39]. This axiom implies that creating a new product never results
in a decrease in a producer’s valuation. Such a condition seems to be reasonable if
one assumes that each product fulfills some “minimal quality requirements” (de-
noted with 0) and a producer should not be punished for producing such a “good”,
but perhaps not an outstanding, item. It may be observed that almost all the “mod-
ern”, post-Hirsch indices of scientific impact (also known as performance indices)
do obey this property.

Proposition 12 ([18]). Let w and 4 be of the form given in Lemma 2. Then M4,w
is arity-monotonic, i.e. such that for each x ∈ I0,1,... it holds M4,w(x, 0) ≥ M4,w(x),
if and only if for all x ∈ I and i, n we have w1(x) ≤ w2(x) ≤ . . . and ci,n ≤ ci,n+1.

The proof is omitted. Nondecreasing, symmetric, and arity-monotonic aggrega-
tion operators are called e.g. impact functions in [23], pre-impact indices in [44],
scientific impact indices in [50], or size-dependent indicators of scientific impact
in [48]. The latter three are of course used by scientometricians.

Note that arity-monotonicity may not be proper in some practical situations.
For example, it is impossible to “promote” producers of low productivity (e.g. yo-
ung scientists in the bibliometric context) with an arity-monotonic OM3 operator.
E.g. if M4,w(x) =

∨n
i=1

x(n−i+1)
√

n ∧ i, then a producer with bigger productivity has to
obtain better product quality than the one who is of small productivity. However,
it is easily seen that such a function cannot fulfill the property discussed here.

Zero-insensitivity, see [21, 50], pays special attention to the extension of an
input vector by an element equal to 0, which is the minimal possible valuation that
a product may gain. Some authors even assume that an aggregation operator must
necessarily obey this property in PAP-like contexts, see [12, 49, 51]. Importantly,
this condition is a quite natural way to embed the I0,1,... space into I∞, see [24] for
discussion and alternative suggestions.
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Proposition 13 ([9]). Let w and 4 be of the form given in Lemma 2. Then M4,w is
zero-insensitive, i.e. such that for each x ∈ I0,1,... it holds M4,w(x, 0) = M4,w(x), if
and only if (∀n) (∀i ∈ [n]) ci,n = ci,n+1, and

(i) w1(0) = 0,

(ii) if x is such that wn(x) < cn,n, then wn(x) = wn+1(x),

(iii) if x is such that wn(x) = cn,n, then wn+1(x) ≥ cn,n.

See [9, Theorem 2] for the proof. Please note that the first condition is due to
the fact that M4,w(∅) = 0. The above proposition implies that OM3 operators
may in such a case be generated by using a single nondecreasing function w and a
sequence of coefficients (c1, c2, . . . ). Moreover, it is easily seen that each nonde-
creasing and zero-insensitive aggregation operator is also arity-monotonic.

Please note that the only weak-sensitive and zero-insensitive OM3 operator is
a strictly increasing function of the Max operator.

Later on it will turn out that zero-insensitivity and even arity-monotonicity
may be problematic: as far as OM3 aggregation operators are concerned, these
properties may sometimes lead to very simple functions only. Thus, they seem to
be too restrictive. However, non-zero-insensitive OM3 operators may appear as
artificial for practitioners.

F-insensitivity, see [21, 50], cf. also “conservative productivity increment”
in [39] and the notion of “stability” in [5], requires that the output value of an
aggregation operator does not change when we add to the input vector x a value
not greater than the current valuation of x.

Proposition 14 ([9]). Let w and 4 be of the form given in Lemma 2. Then M4,w is
arity-monotonic and F-insensitive, i.e. such that for all x ∈ I0,1,... and y ≤ M4,w(x)
we have M4,w(x, y) = M4,w(x), if and only if there exists:

(i) w1(0) = 0,
(ii) a nondecreasing function w, for which if there exists x such that w(x) > x,

then (∀y ∈ [x,w(x)]) w(y) = w(x),
(iii) a nondecreasing sequence (c1, c2, . . . ), such that (∀i) ci < {x ∈ I : x < w(x)},

such that wn = w ∧ cn and ci,n = ci.

See [9, Theorem 3] for the proof. Note that each F-insensitive, nondecreasing and
arity-monotonic symmetric aggregation operator is also zero-insensitive. Among
such aggregation operators we have e.g. the Hirsch index and Max.
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In certain environments we may also want to require that the overall valuation
may only change if we extend a vector by a value strictly greater than the maximal
one. Let us assume that Max(∅) = 0. We have the following.

Proposition 15. Let w and 4 be of the form given in Lemma 2. Then M4,w is
arity-monotonic and max-insensitive, i.e. such that for each x ∈ I0,1,... it holds
M4,w(x,Max(x)) = M4,w(x), if and only if

(i) w1(0) = 0,

(ii) (∀n) (∀x ∈ I) wn(x) = w1(x),

(iii) (∀n) (∀i ∈ [n]) ci,n = w1(b).

Proof. (⇐=) We have M4,w(x) = w1(x(n)) with M4,w(0) = 0, which obviously is a
max-insensitive aggregation operator.

(=⇒) First note that as we have assumed Max(∅) = 0, then M4,w(∅, 0) = M4,w(0) =

0 if w1(0) = 0.
Take any x ∈ I and n ≥ 1. We have w1(x) = w1(x) ∧ c1,1 = M4,w(x) =

M4,w(x, x) = · · · = M4,w(n ∗ x) = wn(x) ∧ cn,n = wn(x). Thus, wn(x) = w1(x) and
cn,n = w1(b).

Now let us assume that x > 0 and take i ∈ [n − 1] for some n. By arity-
monotonicity and nondecreasingness we have wn(x)∧ci,n = M4,w(i∗ x, (n− i)∗0) =

M4,w((i+1)∗ x, (n− i)∗0) = M4,w((i+1)∗ x, (n− i−1)∗0) = wn(x)∧ci+1,n = w1(b),
and the proof is complete.

Again, note that each max-insensitive, nondecreasing and arity-monotonic
symmetric aggregation operator is also zero-insensitive. We see that the only
max-insensitive OM3 operators are nondecreasing functions of the Max operator.

The three following properties have a similar spirit as the ones above. They in
turn guarantee that the output value will surely change if an element of some kind
will be added to the input vector.

Firstly, the following implies that the aggregation operator is “production sen-
sitive”, i.e. an output of any new product always affect overall valuation.

Proposition 16. Let w and 4 be of the form given in Lemma 2. Then M4,w is
zero-sensitive, i.e. such that for each x ∈ I0,1,... it holds M4,w(x, 0) > M4,w(x), if
and only if

(i) (∀n) (∀x ∈ I) wn+1(x) > wn(x) > 0,
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(ii) (∀n) (∀i ∈ [n]) ci,n+1 > ci,n.

Proof. (⇐=) Trivial.

(=⇒) Fix n. Firstly, let x = (n ∗ 0). By Lemma 2 we have M4,w(x) = wn(0)∧ cn,n =

wn(0). On the other hand, M4,w(x, 0) = wn+1(0) ∧ cn,n = wn+1(0), thus necessarily
wn+1(0) > wn(0) and, in particular for n = 1, w1(0) > 0.

Now take any i ∈ [n] and let x = (i ∗ b, (n − i) ∗ 0). We have M4,w(x) =

(wn(b) ∧ ci,n) ∨ (wn(0) ∧ cn,n) = ci,n. On the other hand, M4,w(x, 0) = (wn+1(b) ∧
ci,n+1) ∨ (wn+1(0) ∧ cn+1,n+1) = ci,n+1, thus ci,n+1 > ci,n.

Moreover, consider any y ∈ I and let x = (n ∗ y). We have M4,w(x) =

(wn(y) ∧ cn,n) = wn(y) < wn+1(y) = M4,w(x, 0), thus our sufficient conditions are
also necessary, QED.

Each zero-sensitive aggregation operator is of course arity-monotonic; in fact,
this property may also be called strict arity-monotonicity.

The h-index and Max do not fulfill this property. However, e.g. M4,w(x) =

nH̃(x + 1) =
∨n

i=1(n (1 + x(n−i+1))) ∧ (ni), M4,w(x) = n + H̃(x) =
∨n

i=1(n + x(n−i+1)) ∧
(n + i), or even M4,w(x) = n do obey this condition.

F+sensitivity, see [21, 50], cf. also “productivity responsiveness” in [39],
states that if we add an element greater than current overall valuation, the out-
put value will surely be affected. We discuss this property together with zero-
insensitivity, otherwise the form of 4 and w becomes very complicated.

Proposition 17 ([9]). Let w and 4 be of the form given in Lemma 2. Then M4,w
is zero-insensitive and F+sensitive, i.e. for all x ∈ I0,1,... and y > M4,w(x) we have
M4,w(x, y) > M4,w(x), if and only if there exist:

(i) a function w such that w(x) ≥ x for all x, and strictly increasing for x :
w(x) < w(b),

(ii) a sequence (c1, c2, . . . ) such that for ci < w(b) we have w(x) < ci for all
x : w(x) < w(b) and ci < ci+1.

such that wn = w ∧ cn and ci,n = ci.

See [9, Theorem 4] for the proof. It is easily seen that if M4,w is continuous,
then a zero-insensitive and F+sensitive OM3 operator is of the form M4,w(x) =

w(Max(x)).
On the other hand, each zero-sensitive (note again that the proposition is re-

stricted to zero-insensitive functions only) aggregation operator is also F+sensitive.
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The next property is also examined together with zero-insensitivity and conti-
nuity, for the same reasons as above.

Proposition 18. Let w and 4 be of the form given in Lemma 2. Then M4,w is zero-
insensitive, continuous, and max+sensitive, i.e. for all x ∈ I0,1,... and y > Max(x)
we have M4,w(x, y) > M4,w(x), if and only if there exist (c1, c2, . . . ) and w : I → I
fulfilling:

(i) c1 = c2 = · · · = w(b),

(ii) w is strictly increasing,

such that wn = w ∧ cn and ci,n = ci.

Proof. First of all, it is easily seen that a zero-insensitive OM3 operator with
c1 = w(b) is max+sensitive if and only if w is strictly increasing. This is because
in such case we have M4,w(x) = w(x(n)).

Let us show that the assumption c1 < w(b) leads to a contradiction. Indeed, if
we take any n and then some x such that w(x) ∈ [cn, cn+1), then we have M4,w((n +

1) ∗ x) = w(x) ∧ cn+1 = w(x) ≮ M4,w(y, (n + 1) ∗ x) = w(x) ∧ cn+2 = w(x).

We see that the only zero-insensitive, continuous and max+sensitive OM3 op-
erators are strictly increasing functions of Max(x).

On the other hand, among discontinuous, zero-insensitive and max+sensitive
OM3 operators we may find e.g. M4,w(x) =

∨n
i=1(bI(x(n−i+1))) ∧ i (for b = ∞).

Also, each zero-sensitive function is also max+sensitive.

3.3. Properties guaranteeing consistency of rankings
Another very important group of properties consists of arity-dependent condi-

tions, but deserves to be treated separately. All of the properties discussed below
share the same idea: given a tuple of producers, their relative ordering should not
change if we improve their state in the same way. Here, we shall study only zero-
insensitive aggregation operators, otherwise the form of 4 and w becomes quite
complicated. Unfortunately, it will turn out that only very simple OM3 operators
meet these conditions.

The following property is inspired by an illustration presented in [48]. It states
that if two producers gain the same relative improvement in the products valua-
tions (e.g. they become to be two times better), the way they are ranked should
not change.
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Proposition 19. Let b = ∞, w and 4 be of the form given in Lemma 2. Then M4,w
is zero-insensitive and multiplicative coherent, i.e. for all x, y ∈ I0,1,... and d ≥ 1
if M4,w(x) ≤ M4,w(y), then M4,w(dx) ≤ M4,w(dy), if and only if there exist:

(i) a nondecreasing function w,
(ii) a sequence (c1, c2, . . . ) such that for all k it either holds (∀x > 0) ck ≤ w(x)

or ck = w(b),

such that wn = w ∧ cn and ci,n = ci.

Proof. (=⇒) Note that this property implies that if M4,w(x) = M4,w(y), then for all
d ≥ 1 M4,w(dx) = M4,w(dy).

Take any j, i such that c j < w(b) and ci = w(b). Moreover, take x > 0 and d
(possibly such that dx = b) for which we have w(x) ≤ c j and w(dx) > c j. Thus,
M4,w( j ∗ x) = M4,w(i ∗ x). However, c j = M4,w( j ∗ (dx)) and M4,w(i ∗ (dx)) =

w(dx) > c j, a contradiction.
Thus, for any k it necessarily holds ck = w(b) or ck ≤ w(x) for all x > 0.

(⇐=) Take any x, y ∈ I0,1,... such that M4,w(x) ≤ M4,w(y). As we deal with zero-
insensitive aggregation operators here, with no loss in generality we may assume
that x(1) > 0 and y(1) > 0. Let n = |x|, m = |y|, and k = min{k : ck = w(b)}.

If n,m < k, then M4,w(x) = cn and M4,w(y) = cm. Thus, for all d ≥ 1 we
obviously have M4,w(dx) ≤ M4,w(dy).

If n,m ≥ k, then M4,w(x) = w(x(n−k+1)) and M4,w(y) = w(y(m−k+1)). By nonde-
creasingness of w, again the property holds.

If n < k and m ≥ k, M4,w(x) = cn ≤ M4,w(y) = w(y(m−k+1)) ≤ w(dy(m−k+1)) =

M4,w(dy).
As n ≥ k and m < k is impossible, the proof is complete.

Under continuity, only sample quantiles fulfill this property. Moreover, OM3
operators equivalent to the number of elements in a sequence or the number of
non-zero elements also obey this property.

One may also require a proper behavior of aggregation operators with respect
to a different type of products’ valuations improvement.

Proposition 20. Let b = ∞, w and 4 be of the form given in Lemma 2. Then
M4,w is zero-insensitive and additive coherent, i.e. for all x, y ∈ I0,1,... and e ≥ 0
if M4,w(x) ≤ M4,w(y), then M4,w(x + e) ≤ M4,w(y + e), if and only if M4,w(x) =

w(Max(x)) for some nondecreasing w.
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Proof. (=⇒) As we consider a zero-insensitive OM3 operator, assume that it is
generated by a function w and a sequence (c1, c2, . . . ). We have w(0) ≤ c1. More-
over, M4,w(0) = w(0) = M4,w(n ∗ 0) for all n ≥ 1. If c1 < w(b), then there exists
j > 1 and e > 0 such that M4,w(e) = ci , M4,w( j ∗ e). Thus, M4,w is necessarily
such that c1 = c2 = . . . .
(⇐=) Trivial.

The “independence” property, which was considered in [7], states that the
relative ranking of two producers should not change after an addition of products
of the same quality.

Proposition 21. Let w and 4 be of the form given in Lemma 2. Then M4,w is zero-
insensitive and independent, i.e. for all x, y ∈ I0,1,... and z ∈ I it holds M4,w(x) ≤
M4,w(y)⇒ M4,w(x, z) ≤ M4,w(y, z), if and only if there exist:

(i) a sequence (c1, c2, . . . ) with ci = ci+1 = . . . and ck < ci for some i and k < i,
(ii) a nondecreasing function w such that for any x either w(x) < c1 or w(x) =

w(b),

such that wn = w ∧ cn and ci,n = ci.

Proof. (⇐=) Take any n,m, x ∈ In, y ∈ Im fulfilling M4,w(x) ≤ M4,w(y). Addition-
ally, let z ∈ I. M4,w(x) is equal to w(x(n)) or ci for some i ∈ [n]. M4,w(y) in turn is
equal to w(y(m)) or c j for some j ∈ [m]. By examining all the possible cases we
easily get that M4,w(x, z) ≤ M4,w(y, z).
(=⇒) Let w and (c1, c2, . . . ) be such that wn = w ∧ cn and ci,n = ci.

Take any x such that w(x) ≥ c1. We have M4,w(x) = M4,w(b) = c1. Our
property implies that M4,w(b, x) = c1 ∨ w(x) ∧ c2 = M4,w(b, b) = w(b) ∧ c2 = c2.
Consequently, we obtain that w(x) ≥ cn for all n. Therefore, w(x) = w(b).

Now assume that there exists i such that ci = ci+1. Then M4,w(i ∗ b) = ci =

M4,w((i + 1) ∗ b) and consequently our property implies that ci = cn for all n ≥ i.
Thus, ci = w(b).

Note that under continuity this property holds iff an OM3 operator is a non-
decreasing function of Max. Moreover, e.g. the OM3 operator equivalent to the
number of nonzero elements in a sample also fulfills this property.

Here is another property from [7]. It considers joint output of consortia of
producers: if a producer A is dominated by producer B, and C is dominated by D,
then it is reasonable that A and C together (i.e. their concatenated outputs) shall
be dominated by B and D.
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Proposition 22. Let w and 4 be of the form given in Lemma 2. Then M4,w is zero-
insensitive and consistent, i.e. for all x, x′, y, y′ such that M4,w(x) ≤ M4,w(y) and
M4,w(x′) ≤ M4,w(y′) it holds M4,w(x, x′) ≤ M4,w(y, y′), if and only if there exist:

(i) a sequence (c1, c2, . . . ),
(ii) a nondecreasing function w such that for any x either w(x) < c1 or w(x) =

w(b),

such that wn = w ∧ cn and ci,n = ci.

Proof. (⇐=) Assume there exists x , b such that w(x) ≥ c1. Then M4,w(x) = c1 =

M4,w(b). Then, for any n it should hold M4,w(n ∗ x) = M4,w(x)(n ∗ b) = cn. Thus,
w(x) = w(b).
(=⇒) Take any x′ ∈ In′ , x′′ ∈ In′′ , y′ ∈ Im′ , y′′ ∈ Im′′ such that M4,w(x′) ≤ M4,w(y′)
and M4,w(x′′) ≤ M4,w(y′′).

Let d′ = #{x′i : w(x′i) = w(b)}, d′′ = #{x′′i : w(x′′i ) = w(b)}, e′ = #{y′i : w(y′i) =

w(b)}, and e′′ = #{y′′i : w(y′′i ) = w(b)}. If d′ = 0, then M4,w(x′) = w(x′(n′)) and
M4,w(x′) = cd′ otherwise; and similarly for other vectors.

We of course have d′ ≤ e′ and d′′ ≤ e′′. If e′ = e′′ = 0, then the property
obviously holds, as M4,w(x′, x′′) = w(x′(n′)) ∨ w(x′′(n′′)) ≤ w(y′(m′)) ∨ w(y′′(m′′)) =

M4,w(y′, y′′).
Otherwise, denote with x′′′ := (x′, x′′), y′′′ := (y′, y′′), and let d′′′ := d′ +

d′′, e′′′ := e′ + e′′. If d′′′ = 0, then M4,w(x′′′) = w(x(n′+n′′)), and M4,w(x′′′) =

cd′′′ otherwise. In both cases these values are not greater than M4,w(y′′′) = ce′′′ ,
QED.

Yet again, under continuity, a consistent zero-insensitive OM3 operator is
equivalent to a nondecreasing function of Max.

3.4. Properties providing output value normalization
The last group of the properties discussed concerns the normalization of an

aggregation operator’s output value. Although these conditions are not important
in ranking problems, they may be useful when one is trying to measure a pro-
ducer’s performance. Generally, the following properties try to “calibrate” the
output value according to some vector forms, so that one producer may be said
that he/she is γ times better than another. Although proving most of them for OM3
is very easy, they seem to be quite important for practitioners and thus they are
worth to be stated explicitly.
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In the classical approach to aggregation, one of the most widely discussed
property is the idempotence, see [29], which holds for a given aggregation op-
erator F iff for all x ∈ I and n ∈ N we have F(n ∗ x) = x. We may note that
the only idempotent OM3 operator is equivalent to Max. However, in an arity-
dependent setting such a condition may not seem very important, as in PAP per-
formance/impact measures are needed, and not measures of data central tendency.

The notion of idempotency is generalized by its asymptotic version, cf. [25].
It is easily seen that:

Proposition 23. An OM3 operator M4,w is asymptotically idempotent, i.e. for
any x ∈ I it holds limn→∞M4,w(n ∗ x) = x, if and only if limn→∞ wn(x) = x and
limn→∞ cn,n = b.

The Max operator as well as the generalized Hirsch index H̃ (with wn(x) = x,
ci,n = i) are examples of asymptotic OM3 operators.

The following property may be conceived as an arity-sensitive version of
idempotency for PAP. It states that n products “worth” n units each shall be
“worth” n units overall.

Proposition 24. Let w and 4 be of the form given in Lemma 2. Then M4,w for all
n fulfills M4,w(n ∗ n) = n, if and only if cn,n ≥ n and wn(n) = n.

The proof is omitted. Note that wn(n) = n implies cn,n ≥ n.
Note that the property itself is not arity-dependent. Among OM3 operators

fulfilling it we have e.g. the h-index, Max and H̃. Moreover, idempotence implies
this property.

On the other hand, one may require that n best possible products are “worth”
exactly n.

Proposition 25. Let w and 4 be of the form given in Lemma 2. Then M4,w for all
n fulfills M4,w(n ∗ b) = n if and only if cn,n = n.

The proof is omitted. This property is also not arity-dependent and is fulfilled by
e.g. the h-index.

Other properties of this kind may require e.g. that M4,w(x) ≤ Max(x) (which is
fulfilled iff wn(x) ≤ x) or that M4,w(x) ≤ n (met iff cn,n ≤ n).

Note that although M4,w(x) ≥ Min(x) iff wn(x) ≥ x and cn,n = wn(b), this
condition together with arity-monotonicity leads to OM3 operators equivalent to

21



Please cite this paper as: Cena A., Gagolewski M., OM3: Ordered maxitive, minitive, and modular aggregation
operators – axiomatic and probabilistic properties in an arity-monotonic setting, Fuzzy Sets and Systems 264, 2015,

pp. 138-159, doi:10.1016/j.fss.2014.04.001.

some function of Max. Thus, such a condition seems to be too strong for PAP
and, as far as the OM3 class is concerned, we would rather restrict the output
value from above (w.r.t. quality or quantity of elements).

What is more, one may sometimes require e.g. sub-homogeneity degree 1 (for
all n ∈ N, d ≥ 1, and x ∈ In it holds M4,w(dx) ≤ dM4,w(x)), which is fulfilled
iff wn(dx) ≤ dwn(x), or sub-additivity (for all n ∈ N, e ≥ 0, and x ∈ In it holds
M4,w(x + e) ≤ M4,w(x) + e) which is obtained iff w(x + e) ≤ wn(x) + e, etc.

Note that the only OM3 operator fulfilling homogeneity M4,w(dx) = dM4,w(x)
or additivity M4,w(x + e) = M4,w(x) + e is the Max function.

Table 2 summarizes the properties investigated in this section.

Table 2: Major properties studied
Property Name Result for OM3

F(x
S
∧ y) = F(x) ∧ F(y) symmetric minitivity see [18]

F(x
S
∧ y) = F(x) ∧ F(y) symmetric maxitivity see [18]

F(x
S
∧ y) + F(x

S
∨ y) = F(x) + F(y) symmetric modularity see [18]

x ≤ y⇒ F(x) ≤ F(y) nondecreasingness Lemma 2
x <1 y⇒ F(x) < F(y) sensitivity Proposition 9
x < y⇒ F(x) < F(y) weak sensitivity Proposition 10
limx→x0 F(x) = F(x0) continuity Proposition 11
F(x, 0) ≥ F(x) arity-monotonicity Proposition 12
F(x, 0) = F(x) zero-insensitivity Proposition 13
F(x,F(x)) = F(x) F-insensitivity Proposition 14
F(x,Max(x)) = F(x) max-insensitivity Proposition 15
F(x, 0) > F(x) zero-sensitivity Proposition 16
F(x,F(x) + ε) > F(x), ε > 0 F+sensitivity Proposition 17
F(x,Max(x) + ε) > F(x), ε > 0 max+sensitivity Proposition 18
F(x) ≤ F(y)⇒ F(dx) ≤ F(dy), d ≥ 1 multiplicative coherent Proposition 19
F(x) ≤ F(y)⇒ F(x+e) ≤ F(y+e), e ≥ 0 additive coherent Proposition 20
F(x) ≤ F(y)⇒ F(x, z) ≤ F(y, z), z ∈ I independence Proposition 21
F(x) ≤ F(y) and F(x′) ≤ F(y′) ⇒
F(x, x′) ≤ F(y, y′)

consistency Proposition 22

limn=∞ F(n ∗ x) = x asymptotic idempotence Proposition 23
F(n ∗ n) = n n times n equals n Proposition 24
F(n ∗ b) = n n times b equals n Proposition 25
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Let us consider the following exemplary OM3 operators:

1. Max(x) = x(n) (sample maximum),
2. Max2(x) = x2

(n),
3. MaxN(x) = x(n) ∧ n,
4. Q5(x) = x(n−5+1) if n ≥ 5 and 0 otherwise (∼ fifth quantile, arity-monotonic),
5. Q15(x) = x(n−(5∧n)+1) (∼ fifth quantile, not arity-monotonic),
6. H(x) =

∨n
i=1bx(n−i+1)c ∧ i (the Hirsch index),

7. H̃(x) =
∨n

i=1 x(n−i+1) ∧ i (a generalized Hirsch index),
8. H2(x) =

∨n
i=1b
√x(n−i+1)c ∧ i (the h(2)-index [36]),

9. H̃2(x) =
∨n

i=1
√x(n−i+1) ∧ i (a generalized h(2) index),

10. N(x) = n (sample length),
11. NP(x) =

∑n
i=1 I(xi > 0) =

∨n
i=1 I(x(n−i+1) > 0)b∧ i (number of elements with

non-zero quality).

Table 3 summarizes which of the properties discussed in this section are ful-
filled by the above functions. Quite surprisingly, the OM3 operator that obeys
the greatest number of properties is the Max function. Of course, recall that all
the functions additionally fulfill symmetry, nondecreasingness, symmetric maxi-
tivity, minitivity, and modularity.

4. Probabilistic properties of OM3 operators

In this section the most fundamental probabilistic properties of OM3 operators
are considered. Special attention is paid to the probability distribution of this class
of functions and to the behavior of its basic characteristics, like expected value and
variance, in an arity-dependent setting.

First of all, we should note that in [22], basic probabilistic and statistical prop-
erties of the so-called S-statistics were studied. This class of functions is a par-
ticular subclass of OM3 operators. However, the study concerned the asymptotic
behavior of functions under the assumption that they are averaging aggregation
operators, cf. [29], and these results cannot be straightforwardly extrapolated to
our framework.

Throughout this section we will restrict ourselves only to OM3 operators ful-
filling the zero-insensitivity property. On account of Theorem 13, such operators
may be described by a nondecreasing function w and a sequence (c1, c2, . . . ) such
that (∀n) wn = w ∧ cn and ci,n = ci,n+1. It implies that the form of w does not
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Table 3: Exemplary OM3 operators and properties that they fulfill.

Property name Max Max2 MaxN Q5 Q15 H H̃ H2 H̃2 N NP
∑

arity-monotonicity • • • • ◦ • • • • • • 10
sensitivity ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 0
weak sensitivity • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ 3
continuity • • • • • ◦ • ◦ • • ◦ 8
zero-insensitivity • • ◦ • ◦ • • • • ◦ • 8

F-insensitivity • ◦ ◦ • ◦* • • • ◦ ◦ ◦ 5

max-insensitivity • • ◦ ◦ ◦* ◦ ◦ ◦ ◦ ◦ ◦ 2
zero-sensitivity ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 1

F+sensitivity • • •* ◦ ◦* ◦ ◦ ◦ ◦ •* • 5

max+sensitivity • • •* ◦ ◦* ◦ ◦ ◦ ◦ •* •* 5

multiplicative coherent • • ◦* • •* ◦ ◦ ◦ ◦ •* • 6

additive coherent • • ◦* ◦ •* ◦ ◦ ◦ ◦ •* ◦ 4

independence • • ◦* ◦ ◦* ◦ ◦ ◦ ◦ •* • 4

consistency • • •* ◦ ◦* ◦ ◦ ◦ ◦ •* • 5
asymptotic idempotence • ◦ • • • ◦ • ◦ ◦ ◦ ◦ 5
n times n equals n • ◦ • ◦ • • • ◦ ◦ • • 7
n times b equals n ◦ ◦ • ◦ ◦ • • • • • • 7∑

14 11 8 6 7 5 7 4 4 11 9
∑

(*) denotes cases proven separately.

change as n increases. Therefore, for the purpose of investigating e.g. the asymp-
totic behavior of the expected value, this assumption is necessary.

In order to characterize the distribution of OM3 operators, the following lemma
will be useful.

Lemma 26. Let us fix n. It holds H̃(x) =
∨n

i=1 x(n−i+1)∧i = max {x :
∑n

i=1 I(xi ≥ x) ≥ x},
where I(S ) = 1 iff S is true, and 0 otherwise.

Proof. We have

H̃(x) = max {x(n−i+1) : x(n−i+1) ≤ i} ∨max {i : x(n−i+1) ≥ i} =

= max
{
{x : max {x(n−i+1) : x(n−i+1) ≤ i} ≥ x} ∪ {x : max {i : x(n−i+1) ≥ i} ≥ x}

}
=

= max {x : max {i : x(n−i+1) ≥ x} ≥ x}.

What is more, it is easily seen that max {i : x(n−i+1) ≥ x} =
∑n

i=1 I(xi ≥ x).
Thus, H̃(x) = max {x :

∑n
i=1 I(xi ≥ x) ≥ x}, and the proof is complete.

24



Please cite this paper as: Cena A., Gagolewski M., OM3: Ordered maxitive, minitive, and modular aggregation
operators – axiomatic and probabilistic properties in an arity-monotonic setting, Fuzzy Sets and Systems 264, 2015,

pp. 138-159, doi:10.1016/j.fss.2014.04.001.

Let (X1, . . . , Xn) denote a sample of independent, identically distributed (i.i.d.)
random variables with a common cumulative distribution function (c.d.f.) F de-
fined on I = [0, b], possibility with b = ∞, i.e. supp F ⊆ I.

In the context of PAP, products of high quality ought to appear not very often.
For example, in scientometric modeling F may be assumed to be a heavy-tailed,
right-skewed distribution, like Pareto-type II (defined as F(x) = 1 − (1 + x/s)−k,
x ∈ [0,∞], k, s > 0) or exponential distribution (with F(x) = 1 − exp(−λ x),
x ∈ [0,∞], λ > 0), cf. e.g. [3, 27, 28]. Therefore, the assumption that I = [0, b],
with possibly b = ∞, appears quite naturally.

Theorem 27. Fix n. Let Y = (Y1, . . . ,Yn) i.i.d. G and Mn = H̃(Y) =
∨n

i=1 Y(n−i+1)∧

i. Then the cumulative distribution function of Mn is given by

Pr(Mn ≤ x) = I
(
G(x); n − bxc, bxc + 1

)
,

where I denotes the regularized incomplete Beta function, i.e. I(x; a, b) = 1
B(a,b)∫ x

0
ta−1(1 − t)b−1 dt, a, b > 0 and x ∈ [0, 1].

Proof. Our proof starts with the observation that according to Lemma 26, we have
Mn = max {x :

∑n
i=1 I(Yi ≥ x) ≥ x}. Thus, it holds Mn = max {x : Y(n−dxe+1) ≥ x}.

Let us show that Pr(Mn > y) = Pr(Y(n−byc) > y).
Please note that Mn > y implies n−dMne+1 ≤ n−byc and Y(n−byc) ≥ Y(n−dMne+1) >

y. As Mn > y⇒ Y(n−byc) > y, we have Pr(Y(n−byc) > y | Mn > y) = 1.
Now we will show that Y(n−byc) > y ⇒ Mn > y. It is clear to see that (∀y) we

have n − byc ≤ n − dye + 1. Thus, y < Y(n−byc) ≤ Y(n−dye+1). This implies y ∈ {x :
Y(n−dxe+1) ≥ x} and y < Mn = max{x : Y(n−dxe+1) ≥ x}. Since Y(n−byc) > y⇒ Mn > y,
we have Pr(Mn > y | Y(n−byc) > y) = 1. Therefore, Pr(Mn > x) = Pr(Y(n−bxc) > x).

It is well known that the distribution of the i-th order statistic from an i.i.d. sam-
ple is of the form Y(i) ∼ I(G(x); i, n − i + 1), see e.g. [11]. As a consequence, we
get:

Pr(Mn > x) = 1 − I(G(x); n − bxc, bxc + 1),

and the proof is complete.

Remark 28. For any function w : I → I, (w(X1), . . . ,w(Xn)) is also a sample of
i.i.d. random variables. It is well known that if Xi is a continuous random variable
with a density f , then the distribution of Yi = w(Xi) may be simply derived as
G(y) = Pr(Yi ≤ y) = Pr(w(Xi) ≤ y) =

∫
y:w(x)≤y

f (x) dx. It is worth noting that if
w is strictly increasing, then Yi follows the distribution with c.d.f. G := F ◦ w−1.
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However, generally even if Xi is continuous, Yi need not be continuous. On the
other hand, if Xi is a discrete random variable with a probability mass function
f (x) = Pr(Xi = x), then the p.m.f. of Yi is given by g(y) = Pr(w(Xi) = y) =∑

y:w(x)=y f (y). �

It is worth pointing out that I(G(x); n − bxc, bxc + 1) may have discontinuities
e.g. at points in [n], even if G is continuous. Figure 4 presents an exemplary graph
of the c.d.f. of an OM3 operator.
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1.0

0 1 2 3 4 5

Figure 2: Cumulative distribution function of an OM3 operator M4,w =
∨n

i=1 Y(n−i+1) ∧ i for an
i.i.d. random sample (Y1, . . . ,Yn) following the uniform distribution on [0, 5] and n = 8.

Remark 29. On account of Lemma 6 and notation used therein, if an OM3 operator
is such that the triangle of coefficients is of the form c1 < c2 < · · · < cn for some
n, then M4,w(x) = fn(

∨n
i=1 w′n(x(n−i+1)) ∧ i) for some increasing function fn and

nondecreasing function w′n. Thus, the distribution of such an OM3 operator is
defined as I ◦ f−1

n and G′ equal in case of i.a. increasing wn to G ◦ w′−1
n . �

Remark 30. Let us fix n. The h-index is given by H(x1, . . . , xn) =
∨n

i=1bx(n−i+1)c ∧

i. According to Lemma 6 and the notation used therein, we have w′n(x) = bxc
and fn(x) = x. Moreover, for an i.i.d. sample of random variables (X1, . . . , Xn)
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with c.d.f. F, the distribution of Yi = bXic is given by G(y) = Pr(bXic ≤ y) =∑byc
i=0 (F(i + 1) − F(i)) = F(by + 1c). Therefore, on account of Theorem 27, H(X1,

. . . , Xn) ∼ I(F(by + 1c), n − byc, byc + 1). Please note that this result is consistent
with the one obtained in [20]. �

Taking the above remarks into account, from now on – with no loss in gener-
ality – we will consider only OM3 operators given by

H̃(Y1, . . . ,Yn) =

n∨
i=1

Y(n−i+1) ∧ i,

where an i.i.d. random sample (Y1, . . . ,Yn) follows some distribution G.
Note that the regularized incomplete beta function is the c.d.f. of a beta distri-

bution and is also connected to the binomial distribution. Nevertheless, neither in
a beta nor a binomial distribution, the second and the third parameters of I(x; a, b)
do not depend on x. In our case, however, this nice property is not fulfilled, so any
analytic calculations are much more difficult. Let us now recall some representa-
tions and properties of the regularized incomplete beta function.

Remark 31. For any integer a, it holds

1 − I(x; a, b) = I(1 − x; a, b) = (1 − x)a+b−1
a−1∑
i=0

(
a + b − 1

i

) ( x
1 − x

)i
,

see [1, Eq. 26.5.7], and

I(x; a, b) =
Γ(a + b)

Γ(a + 1)Γ(b)
xa(1 − x)b + I(1; a + 1, b),

see [1, Eq. 26.5.16]. �

Remark 32. The expected value and variance of Mn are given, respectively, by

E(Mn) =

∫ ∞

0
(1 − I(G(x); n − bxc, bxc + 1)) dx,

Var(Mn) = 2
∫ ∞

0
x(1 − I(G(x); n − bxc, bxc + 1)) dx − (E(Mn))2.

�
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Let us investigate the behavior of the expected value of OM3 operators. Ac-
cording to Remark 31, the expected value of Mn is given by

E(Mn) =

∫ n

0

(1 −G(x))n
n−bxc−1∑

i=0

(
n
i

) (
G(x)

1 −G(x)

)i
 dx

We will show that the expected value of OM3 operators tends to infinity as
n→ ∞. Before that we shall state the following auxiliary result.

Lemma 33. Let (Y1,Y2, . . . ) i.i.d. G such that supp G = [0,∞). For fixed i let
(Zi

n)n∈N,n≥i be a sequence of random variables given by

Zi
n = Y(n−i+1) ∧ i,

where Y(n−i+1) ∼ I(G(x); n− i + 1, i) and Yi ∼ G. Then Zi
n converges in distribution

(weakly; see. [45, Sec. 1.2.4]) to a random variable Zi such that

Pr(Zi = i) = 1.

Proof. Let I = [0,∞]. The proof starts with an observation that the distribution of
Zi

n is given by

F i
n(x) =

{
I(G(x); n − i + 1, i) if x < i,
1 if x ≥ i.

Let x < i. Please note that on account of Remark 31 we have:

F i
n(x) := 1 − I(1 −G(x); i, n − i + 1) = G(x)n

i−1∑
j=0

(
n
j

) (
1 −G(x)

G(x)

) j

.

Moreover, if (1 − G(x))/G(x) ≤ 1, then F i
n(x) ≤ G(x)n ∑i−1

j=0

(
n
j

)
≤ G(x)n(n +

1)i−1. On the other hand, for (1 − G(x))/G(x) > 1 we have F i
n(x) ≤ G(x)n((1 −

G(x))/G(x))i−1 ∑i−1
j=0

(
n
j

)
≤ G(x)n((1−G(x))/G(x))i−1(n+1)i−1. Hence, in both cases

it holds F i
n(x) ≤ Ci(x)G(x)n(n + 1)i−1, where Ci(x) := ((1 −G(x))/G(x))i−1 ≥ 1.

It may be easily shown that, by recursively applying the l’Hôpital rule, an(x) =

Ci(x)G(x)n(n + 1)i−1 → 0. Thus, as 0 ≤ F i
n(x) ≤ an(x), on account of the squeeze

theorem we have limn→∞ F i
n(x) = 0 for x < i. On the other hand, obviously for

x ≥ i and all n we have F i
n(x) = 1.

Consequently, since limn→∞ F i
n(x) = F i(x) =

{
0 if x < i
1 if x ≥ i , we have that

Zi
n

d
−→ Zi, where Zi

n follows a distribution F i(x), and therefore Pr(Zi = i) = 1.
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We can now formulate the main result concerning the limiting behavior of the
expected value.

Theorem 34. Let (Y1,Y2, . . . ) i.i.d. G such that supp G = [0,∞). Then, E(Mn)
n→∞
−−−→

∞.

Proof. Note that (∀n ∈ N) (∀i ∈ [n]) Mn ≥ Y(n−i+1)∧i. Therefore, Mn stochastically
dominates Zi

n almost everywhere, as Pr(Mn < Zi
n) = 0. It implies that Mn �FS D Zi

n,
where �FS D denotes first order stochastic dominance. Hence, E(Mn) ≥ E(Zi

n). It
can be shown that:

E(Mn+1) − E(Mn) =

∫ n

0

Γ(n + 1)
Γ(n − bxc + 1)Γ(bxc + 1)

G(x)n−bxc(1 −G(x))bxc+1 dx +

+

∫ n+1

n

(
1 − I(G(x); n − bxc + 1, bxc + 1)

)
dx ≥ 0,

hence E(Mn) is a nondecreasing sequence. Let us denote m := limn→∞ E(Mn).
Passing to the limit with E(Mn) ≥ E(Zi

n), we obtain m > i. Since the above
inequality holds for all i ∈ [n] and n → ∞, it is clear to see that m = ∞, and the
proof is complete.

Remark 35. It is easily seen that if supp G = [0, b], where b < ∞, then for i > b we

have Zi
n

d
−→ Zi, where Zi is such that Pr(Zi = b) = 1. Therefore, limn→∞ E(Mn) = b.

Fig. 3a, where the expected value of Mn for a sample of random variables from
the uniform distribution on [0, 5] as a function of n is depicted, is an illustration
of such a case. Please note the logarithmic scale on the X axis. As we may have
expected, the variance of Mn, presented in Fig. 3b, tends to zero with increasing n.

Let us now consider some numerical results. Fig. 4a depicts the expected
values of Mn as a function of sample size n for various exponential distributions
E(λ). Please note the logarithmic scale on the X axis. Different values of the
λ parameter, from 0.5 to 5, were considered. Note that in PAP the distribution
parameters reflect a producer’s ability to produce artifacts of high quality. The
sample size describes the number of items created by a producer. Note that, as it
was stated in Theorem 34, the expected values E(Mn) increase as n increases. As
it was mentioned before, OM3 operators in PAP context are said to capture two
dimensions of producers’ quality – quality of their products and their productivity.
However, producers that release artifacts with generally low rating may obtain the
same evaluation as producers with high quality products simply by increasing the
productivity. This may be easily noticed while investigating the expected value of
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Figure 3: Expected value (a) and variance (b) of OM3 operators for a sample of random variables
from the uniform distribution on [0, 5], as a function of sample length, n.

Mn. For example, let us consider the expected evaluation of producers described
by E(0.5), E(1) and E(1.5). Here, the expected quality of each of their products
is described in terms of the expected values equal to 2, 1, and 2/3 and medians
equal to 1.4, 0.7, and 0.4, respectively. However, the analyzed producers may get
the same rating, for example 5, when they release about 62, 752 and over 9000
products, respectively. Similar conclusions can be made for a Paretian model,
see Fig. 5a. Even though Pareto type II (P2(k, s)) distribution is defined by two
parameters – of shape k and scale s – it can be brought to a one parameter case
by a proper input data transformation. Thus, in our investigation for the sake of
simplicity, we assumed that s = 1. Please note that the expected value of P2(k, s)
is undefined for k ≤ 1.

Unlike the expected value of the variable Mn, its variance behaves in a more
complicated way. Fig. 4b and Fig. 5b depict Var(Mn) as a function of sample size
n for an exponential and Paretian model, respectively. Interestingly, for the expo-
nential distribution, variance of Mn decreases as n increases. What is more, it is
clear that this is not a monotonic function, but it seems to approach 0. Interest-
ingly, in case of a Paretian model, on the other hand, opposite relation is observed,
even for small values of k ≤ 2 for which variance in P2 does not exists.
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Figure 4: Expected value (a) and variance (b) of OM3 operators for samples of random variables
from various exponential distributions as a function of sample length, n.
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Figure 5: Expected value (a) and variance (b) of OM3 operators for samples of random variables
from various Pareto-type II distributions as a function of sample length, n.
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5. Conclusions

Derivation of reliable and fair evaluation or ranking methods for information
resources producers is an important challenge for information sciences and math-
ematics. We have recalled already known but also indicated some new interesting
instances of the Producers Assessment Problem especially connected with deal-
ing with information overload issue, e.g. in web and computer software quality
assessment.

One of the possible ways to create tools for PAP is by utilizing the notion
of aggregation operators. In fact, most of the proposals made in the informetric
(especially bibliometric) literature fall into this class, even if their authors are not
conscious about it. On the one hand, this is particularly interesting as it shows
that the theory of aggregation has simple and intuitive foundations. On the other,
special attention should be paid on informetricians’ results as some of them may
try to “reinvent the wheel”.

In this paper we have focused especially on zero-insensitive OM3 aggregation
operators, which naturally generalize Hirsch-like indices of impact. Many desir-
able properties were postulated or recalled. Quite unexpectedly, the OM3 operator
that fulfills most of the properties is the Max function. It is known, however, that
such a function does not take the productivity of a producer into account at all.
None of the Hirsch-like indices (cf. Lemma 8) give a consistent ranking of tuples
of producers, see. Sec. 3.3.

All the OM3 operators suffer for the following drawback. For any x let i be
such that wn(x) ∈ (ci−1, ci]. Then we have M4,w(i ∗ x, (n − i) ∗ 0) = M4,w((i − 1) ∗
b, (n− i+1)∗ x). It is easily seen that the first aggregated vector is the minimal one
giving this output value, and the latter one is the maximal (for fixed n). We may of
course ask a question if the OM3 operators do not ignore too much information in
an input vector. Our future work should be committed towards utilizing functions
that result in a value ∈ Ik for some k > 1.

A similar axiomatic analysis, concerning different classes of aggregation oper-
ators, should be performed in the future. Researchers in some of the bibliometric
papers suggested the utilization of “scoring rules”, see [37, 48], which may over-
come the ranking inconsistency issues. These functions are nothing else than a
subclass of modular aggregation operators, cf. [38]. Note that arity-monotonic
modular operators may not fulfill F-insensitivity or max-insensitivity so easily.

What is even more, some recent results presented in [19] indicate that aggre-
gation operators may not at all provide a proper way to assess producers. Such
mathematical tools are known to describe well some characteristics of data sets
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(e.g. generalized means may be used to measure the so-called central tendency)
or construct generalized connectives for fuzzy logic. However, we still need some
stronger, formal arguments for or against their usage in PAP. Are e.g. the Hirsch-
like indices only tools for stating that i items have quality of w(i) and nothing
more?

Some interesting remarks may be also induced by analyzing the behavior of
OM3 operators in a probabilistic setting.

Please note that the derived form of cumulative distribution function of zero-
insensitive OM3 operators – which is defined in terms of regularized incomplete
beta function – may often be only computed numerically. Firstly, all parameters of
the regularized incomplete beta function depend on the x argument. Moreover, the
continuity of a random variable’s distribution does not imply the continuity of Mn,
since it was shown that this function is usually not continuous at points from [n].
Another interesting relation was shown for asymptotic behavior of expected value
of Mn. It turns out that for all random vectors following a distribution G, such
that supp G = [0,∞), expected value of Mn tends to infinity. Note that since many
commonly used informetric tools, like the h-index, may be expressed as OM3
operators, this result has some interesting practical implications. No matter what
is the expected quality measure of each input, increasing the productivity allows
us to obtain arbitrarily high output valuation. In other words, when it comes to
OM3 operators, productivity is of great importance.

On the other hand, numerical results concerning the variance of Mn show differ
behavior depending on input data distribution.

Please note that the empirical results obtained in [10] indicate interesting di-
rections worth more detailed investigation – like dependencies between different
subclasses of OM3 operators, which can be modeled by copulas.

In [20], on the other hand, parametric statistical hypothesis test for the equality
of probability distributions’ parameters based on the difference between Hirsch’s
h-indices of two equal-length i.i.d. random samples were constructed. Please note
that since h-index is a particular example of OM3 operators, thus the need of the
generalization of this results seems to be quite natural.

Another interesting problem worth detailed investigation concerns modular
operators. Even though many has been said in this matter, see e.g. [11], some
new, interesting ideas may arrive when studying their probabilistic properties in
an arity-dependent context, which is non-standard not only for the theory of ag-
gregation, but also for probability theory.
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