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Abstract

The theory of aggregation most often deals with measures of central tendency.
However, sometimes a very different kind of a numeric vector’s synthesis into a
single number is required. In this paper we introduce a class of mathematical func-
tions which aim to measure spread or scatter of one-dimensional quantitative data.
The proposed definition serves as a common, abstract framework for measures of
absolute spread known from statistics, exploratory data analysis and data min-
ing, e.g. the sample variance, standard deviation, range, interquartile range (IQR),
median absolute deviation (MAD), etc. Additionally, we develop new measures
of experts’ opinions diversity or consensus in group decision making problems.
We investigate some properties of spread measures, show how are they related to
aggregation functions, and indicate their new potentially fruitful application areas.

Keywords: Group decisions and negotiations, aggregation, spread, deviation,
variance

1. Introduction

Many introductory textbooks on applied statistics (or academic lectures on the
subject) include a review of the so-called descriptive statistics, i.e. methods for
summarizing quantitative data. Most often such methods are divided into at least
two classes (cf. Aczel, 1996, Chap. 1 and e.g. Cramér, 1946):
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1. measures of central tendency (also known as measures of location or cen-
trality of observations); e.g. sample quantiles (including median, min, and
max), arithmetic mean, mode, trimmed and winsorized mean etc.,

2. measures of variability (or data spread), e.g. range, interquartile range, vari-
ance, standard deviation.

At the most general level, the process of combining multiple numeric values
into a single, representative number is called aggregation. The theory of aggrega-
tion became a genuine, rapidly developing research field in the 1980s (see e.g. Be-
liakov et al., 2007; Calvo et al., 2002; Grabisch et al., 2009, 2011a,b). It may
be observed, however, that the aggregation theory mainly focuses on the above-
mentioned measures of central tendency, e.g. generalized means (OWA, OWMax
operators, quasi-arithmetic means, etc.), averages, or “averaging functions”. Such
a broad class of tools is characterized by the following widely accepted definition
of an aggregation function (see Grabisch et al., 2009, Def. 1.1).

Definition 1. Let I = [a, b]. A : In → I is an aggregation function if at least:

(a1) it is nondecreasing in each variable, i.e. for all x, x′ ∈ In such that x ≤n x′,
i.e. (∀i) xi ≤ x′i , it holds A(x) ≤ A(x′),

and fulfills the boundary conditions:

(a2) infx∈In A(x) = inf I,
(a3) supx∈In A(x) = sup I.

It is true that these characteristic properties reflect somehow the concept of
data synthesis: finding a value representative to the whole vector. Moreover, it
is well-known that such functions are strongly connected to monotone (fuzzy)
measures and integrals (cf. e.g. Greco et al., 2014).

Aggregation functions have many successful applications, for example in mul-
ticriteria or group decision making, statistics, quality management, engineering,
approximate reasoning, fuzzy sets and fuzzy logic (cf. the notion of a t-norm and
t-conorm, which are particular aggregation functions in [0, 1]2), etc.

Example 1. In a group decision making problem, assume that n decision makers
express as x1, . . . , xn ∈ [0, 1] the strength of preference toward an alternative.
An aggregation function may be used to combine these assessments in order to
obtain a global score A(x1, . . . , xn). For example, let n = 4 and x = (1, 1, 1, 0).
If all the experts have the same standing, one may use e.g. the arithmetic mean
to combine their opinions; in such a case we get A(x) = 0.75. However, assume
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that the fourth decision maker is conceived as less competent (at least in a given
matter) than the other ones, or his/her opinion has lower significance for some
other reason (see e.g. Bernasconi et al., 2014; Saaty, 1994). If e.g. a weighting
vector w = (2/7, 2/7, 2/7, 1/7) describes the importance of the respective judges,
then by calculating the weighted mean we get A′(x) = 6/7 ' 0.86.

It is evident that to understand the very nature of aggregation processes better,
as well as to meet the practitioners’ needs, we should explore new classes of
methods for summarizing quantitative data. And so, the second group of measures
from the above classification of descriptive statistics consists of single numbers
that quantify the broadly-conceived “variability” of mathematical objects. Let us
investigate it more deeply.

An important, yet not directly connected with our task, characterization of
measures of entropy or uncertainty of discrete probability mass functions (repre-
sented by numeric vectors in [0, 1]n with elements summing up to 1) was proposed
by Martín et al. (2001). Such a class includes e.g. the Shannon entropy and alike,
cf. also (Kostal et al., 2013). Other very loosely related measures include the
notion of fuzziness of a fuzzy set, cf. (Sanchez and Trillas, 2012; Weber, 1984;
Zeng and Li, 2006), multidiscances (Martin and Mayor, 2011), or a probability
distribution’s scale parameter estimates (non-negative, translation and ratio scale
invariant functions discussed by Pitman, 1939).

Among the aggregation methods of our concern, on the other hand, we may
find:

1. Measures of absolute data spread, e.g. standard deviation, IQR, MAD. In
this case, an absolute spread measure V may accompany an aggregation
function A in order to state that a numeric list x is concisely described as
A(x) ± V(x).

2. Measures of relative data spread (e.g. Gini coefficient, coefficient of vari-
ation), which are dependent on the order of magnitude of a numeric list’s
elements. For instance, imagine that we have two groups of people. The first
group consists of (1, 2, 3)-year-olds and the second one of (101, 102, 103)-
year-olds. Intuitively, the relative spread of age in the first group is greater
than that of the second group.

Most importantly, to our best knowledge none of these has been discussed from
the point of view of aggregation theory. In particular, it is still unknown what
characteristic properties link the measures within both groups. Note that even in
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statistics there are many functions which aim – at least theoretically – to be used
for the mentioned purposes. Also, diverse application areas require treatment with
different suitable measures. We strongly believe that the measures of absolute and
relative spread are worth of deeper, separate studies. Hence, this contribution will
focus on the first subclass.

Example 1 (cont’d). If all the experts are of the same esteem, we may use e.g. the
sample standard deviation to assess the consistency of decision makers’ opinions,
refer e.g. to (Huang et al., 2013) for such an approach. However, if some form of
weighting of the importance of opinions or their values is needed, then we should
seek for a different kind of method for measuring the hetero/homogeneity. This,
apart from measures of central tendency, could be an important, supplementary
information on a numeric sequence, cf. e.g. (Ohki and Murofushi, 2012).

The paper is structured as follows. In Sec. 2 we propose a binary preorder
which is further on used to determine whether a vector has no larger absolute
spread than another one. Basing on this notion, in Sec. 3 we introduce the notion
of a spread measure and indicate some additional properties that may be useful
in particular application areas. In Sec. 4 we prove that the spread measures are
naturally connected to aggregation functions. In Sec. 5 we show that the well-
known descriptive statistics, like sample variance, standard deviation, interquartile
range, range, median absolute deviation, and mean difference, are consistent with
our definition and develop some new classes of functions which are of particular
usefulness in DM tasks. Finally, Sec. 6 concludes the paper and indicates many
ideas worth of deeper further studies.

2. Vectors’ spread

Fix n ∈ N and let I = [a, b], b > a. From now on for each c ∈ I we denote by
(n ∗ c) a sequence (c, c, . . . , c) ∈ In. Additionally, we assume that [k] = {1, . . . , k}
and that whenever at least one argument is a sequence, then all arithmetic op-
erations are properly vectorized, e.g. we have x + x′ = (x1 + x′1, . . . , xn + x′n) and
x+c = x+(n∗c) = (x1 +c, . . . , xn +c). In particular, Ind is a vectorized Boolean in-
dicator function, i.e. Ind(c1, . . . , cn) = (v1, . . . , v1) with vi = 1 iff logical condition
ci is true and 0 otherwise. What is more, let x(i), i ∈ [n], denote the ith small-
est element in x ∈ In, S[n] denote the set of all permutations of [n], and for any
σ ∈ S[n], In

σ = {(x1, . . . , xn) ∈ In : xσ(1) ≤ · · · ≤ xσ(n)}. Furthermore, if F : In → I,
then let F|σ denote the restriction of F to In

σ, i.e. F|σ : In
σ → I, F|σ(x) = F(x) for

any x ∈ In
σ.
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2.1. Introductory remarks
Please note that the notion of ≤n plays a central role in the definition of ag-

gregation functions. It is because an aggregation function is a morphism between
the partially ordered space (In,≤n) and linearly ordered space (I,≤), cf. property
(a1). In other words, if x ≤n x′, then we are certain that each aggregation function
ranks x no higher than x′.

We shall introduce the class of absolute spread measures in a similar manner.
Let us pose a question: In which case does a given vector in In surely have the
same or not greater spread than another one in In? Here is a list of the sine qua
non postulates that seem reasonable for most applications.

• Lowest possible spread. Any constant vector, (n ∗ c), c ∈ I should have the
lowest possible spread of all the vectors considered.

• Invariance to translations. Spread comparison results should not change
when we translate all elements in at least one sequence considered, i.e. x
and x + t are of the same spread for any x, t. Note that such a condition
would be inappropriate in case of measures of relative spread.

• Non-symmetry. In statistics and data analysis, perhaps we will not take
into account the relative ordering of the elements in a sequence: for any
σ′, σ′′ ∈ S[n] the vectors (xσ′(1), . . . , xσ′(n)) and (xσ′′(1), . . . , xσ′′(n)) have the
same spread, as we treat all the observations as just “points in the real line”;
however, here we should be interested in a more general setting in which the
relative ordering may be important: for example, each element in a vector
may have a corresponding weight which is determined by its position (the
ith element may be more “important” than the jth, cf. the above example).

Moreover, how to modify a given vector x so that its spread surely does not de-
crease? A sensible answer may be given in terms of the notion of some kind
of distance between all the pairs of elements. Namely, if the distance between
each xi and x j does not decrease, then the spread also does not decrease. The
most natural choice of the distance measure in I is of course an `p-norm gener-
ated one, d(xi, x j) = |x j − xi|. However, according to the non-symmetry postulate,
we should rather insist on checking whether the signed distance between each
pair of observations of the first vector is not greater than the distance between the
corresponding pairs from the second one, cf. (Rothschild and Stiglitz, 1970) for a
well-known approach concerning increasing a spread of a probability distribution.
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2.2. Definition
The above intuitions are reflected by the following binary relation 4n on In.

Given x, x′ ∈ In, we write x 4n x′ and say that x has not greater absolute spread
than x′, if and only if for all i, j ∈ [n] it holds:

(xi − x j)(x′i − x′j) ≥ 0 and |xi − x j| ≤ |x′i − x′j|. (1)

Figure 1 illustrates two vectors: x and its modified version x′ with increased
distances between consecutive elements.

x′
1 x′

2 x′
3 x′

4 x′
5 x′

6 x′
7 x′

8 x′
9 x′

10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 1: Two exemplary vectors with different spreads: x 4n x′

Example 2. We have (0.0, 0.1, 0.3) 4n (0.0, 0.2, 0.6). Moreover, (0.0, 0.1, 0.3) 4n

(0.2, 0.3, 0.5) 4n (0.0, 0.1, 0.3).

2.3. Properties and examples
Please note that 4n is a preorder on In, i.e. a relation that is reflexive and

transitive. Firstly, let us study how 4n behaves under scaling and translation of
elements in a given vector.

Remark 2. It is easily seen that for all s ≥ 1 and x ∈ In such that sx = (sx1, . . . , sxn) ∈
In we have x 4n sx and of course 1

s x 4n x. Additionally, for all t ∈ R for which
t + x = (t + x1, . . . , t + xn) ∈ In it holds x 4n t + x and, at the same time, t + x 4n x.
Thus, 4n is not antisymmetric.

What is more, it is easily seen that for all c ∈ I, (n ∗ c) is a minimal element
of (In,4n), i.e. for any x we have (n ∗ c) 4n x. This relation is also convex: for all
x, x′, α ∈ [0, 1] it holds x 4n αx + (1 − α)x′ 4n x′ whenever x 4n x′.

Note that if I is not a singleton, then also 4n is not a total (complete) binary
relation: there exist x, x′ such that x $n x′ and x′ $n x. In other words, not all
pairs of vectors are comparable with 4n.

Example 3. It holds (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) $n%n (0.0, 0.0, 0.0, 1.0, 1.0, 1.0),
where of course <n=4−1

n . This fact conforms with the intuition: we cannot objec-
tively (from all points of views) state which of the two vectors has greater spread:
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the second vector represents highly “polarized” observations, but in the two sub-
groups (0.0, 0.0, 0.0) and (1.0, 1.0, 1.0) the spread is the lowest possible (we may
wish to give more weight to e.g. small observations). On the other hand, the obser-
vations in the first vector are all different. We see that, in general, our relation does
not indicate whether we should look at a “global” or a “local” level, which is an ad-
vantage. A similar behavior is exhibited by ≤n, e.g. we have (0.5, 0.5) 6≤n 6≥n (0, 1).

Additionally, whether 4n holds for given x, x′ depends on how the elements
in both vectors are jointly ordered. The left side of (1) implies that if x 4n x′,
then x, x′ are comonotonic (cf. Grabisch et al., 2009, Def. 2.123). Thus, trivially,
if x 4n x′, then there exists σ ∈ S[n] such that x, x′ ∈ In

σ. In fact, it might be
shown that σ is an ordering permutation of x′.

Example 1 (cont’d). Our definition implies that (1.0, 1.0, 1.0, 0.5) $n%n (0.6, 1.0,
1.0, 1.0). When we treat the elements as just points in the real line, the second
vector has not greater spread than the first one. However, in general we cannot
compare them. Such a behavior of the 4n relation is especially useful in group
decision making. Recall that in Example 1 we had different confidence toward
the competence of decision makers, and we should be really careful when judging
whether they agree on a given topic or not. In our example, x4 is known to ex-
press a less faithful judgment. Thus, in (1.0, 1.0, 1.0, 0.5), the first three “faithful
experts” totally agree and in (0.8, 1.0, 1.0, 1.0) they do not reach full consensus.

3. Spread measures

3.1. Definition
Let us proceed with the definition of objects in which we have a special interest

in this paper.

Definition 3. A spread measure is a mapping V : In → [0,∞] such that:

(v1) for each x 4n x′ it holds V(x) ≤ V(x′),
(v2) for any c ∈ I it holds V(n ∗ c) = 0.

Note that the first characteristic property implies that each spread measure is
translation invariant, i.e. we have:

(v0) For any x ∈ In and t ∈ R such that x + t ∈ In it holds V(t + x) = V(x).
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This property is fulfilled because (∀t, x) x 4n t + x and t + x 4n x (see Remark 2).
On the other hand, the second characteristic property gives a kind of “normal-

ization” of a spread measure’s output value: a constant vector has no spread at
all. Of course, for n = 1, a spread measure always outputs the value 0, as a single
number has “no spread”. Thus, we will always be interested in the case n ≥ 2.
Also please note that for each function fulfilling (v1), by the fact that (∀c ∈ I)
(n ∗ c) 4n x, the second characteristic property is equivalent to requiring that
infx∈In V(x) = 0. We see that each V is a morphism between the preordered space
(In,4n) and ([0,∞],≤), fulfilling the boundary condition (v2) concerning minima
of (In,4n).

3.2. Additional properties of spread measures
Note that there is no much sense in assuming that V should be a function onto

I, because of translation invariance. 0 is a good choice for the “lowest possible
spread” as we will later see that some well-known measures of spread used in
statistics do indeed output such a value for (n ∗ c). On the other hand, in prac-
tice, when constructing a spread measure, one may wish to think of a kind of
normalization of V by providing some condition similar to the (a3) property, for
example to impose that a spread measure in [0, 1]n gives values in [0, 1], or – more
generally – in [0, b − a]. These requirements may be expressed by the conditions:

(v3) supx∈In V(x) = b − a, or
(v3’) supx∈In V(x) ≤ b − a,

In this paper (v3) and (v3’) are not too important. This is because we have the
following property (a similar result holds for aggregation functions).

Remark 4. Let supx∈In V(x) = u. Then for each nondecreasing function ϕ :
[0, u] → [0, (b − a)] such that ϕ(0) = 0, ϕ(u) = b − a, if V is a spread mea-
sure, then ϕ ◦ V is a spread measure fulfilling (v3).

Of course, in some cases one may impose additional conditions on V, like
homogeneity of degree 1 (w.r.t. multiplication, also called ratio scale invariance,
see Grabisch et al., 2009, Def. 2.86), cf. Remark 2:

(v4) (∀x ∈ In) (∀s > 0) if sx ∈ In, then V(sx) = sV(x),

or continuity (cf. Grabisch et al., 2009, Proposition 2.8):

(v5) V is continuous in each variable.
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Moreover, in statistics (but perhaps not in decision making) we may assume that
for each σ ∈ S[n] and for all vectors x it holds V(x) = V(xσ(1), . . . , xσ(n)), which
is the same as assuming that we e.g. aggregate only nondecreasingly sorted vec-
tors. Thus, we may need the symmetry property (cf. Grabisch et al., 2009, Theo-
rem 2.34):

(v6) (∀x ∈ In) V(x) = V(x(1), . . . , x(n)),

and so on.

Example 1 (cont’d). Let x = (1, 1, 1, 0.5) and x′ = (0.5, 1, 1, 1) denote the opin-
ions of four experts on two different matters and w = (2/7, 2/7, 2/7, 1/7) be a
weighting vector, i.e. the fourth expert is regarded as less competent than the oth-
ers. The weighted means are equal to 13/14 and 12/14, respectively. The mean
squared deviance from the weighted mean MSDw(y) =

∑n
i=1(yi −

∑n
j=1 wiyi)2/4

gives MSDw(x) = 39/784 and MSDw(x′) = 37/784. However, by using a spread
measure WD2WAMw,w(y) =

∑n
i=1 wi(yi −

∑n
j=1 wiyi)2 (see Proposition 17), we ob-

tain WD2WAMw,w(x) = 3/98 and WD2WAMw,w(x′) = 5/98, which better agrees
with our intuition.

In Section 5 we will show that such functions as variance, standard deviation,
range, and interquartile range (among others) are indeed spread measures. Before
that, however, we should study the relationship between spread measures and ag-
gregation functions. Additionally, we are going to explore some basic properties
of spread measures.

4. Spread measures and their relation to aggregation functions

For any given x ∈ In let diff(x) = (x(2)− x(1), . . . , x(n)− x(n−1)) denote the iterated
difference between consecutive ordered components of a given vector. Please note
that such a function is available in some statistical packages: for instance, it may
be calculated by calling diff(sort(x)) in R (R Development Core Team, 2014).
We see that if δ = diff(x), then 0 ≤ δi ≤ b − a and

∑n−1
i=1 δi ≤ b − a. Intuitively,

if x is already ordered, then this operation may be viewed as a kind of “vector
differentiation”. On the other hand, for x̃ = cumsum(x(1), δ) = (x(1), x(1) +δ1, x(1) +

δ1 +δ2, . . . , x(1) +δ1 + · · ·+δn) denoting the cumulative sum of δ̂ = (x(1), δ) we have
x(i) = x̃i, xi = x̃σ−1(i), where σ is such that x ∈ In

σ. Thus, x may be reconstructed
from x(1), δ, and σ.

We are now in a position to provide an equivalent definition of the relation
defined by (1).
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Lemma 5. For any x, x′ ∈ In it holds x 4n x′ if and only if x, x′ are comonotonic
and diff(x) ≤n−1 diff(x′).

Proof. (=⇒) Trivial.
(⇐=) Take any comonotonic x, x′ and let σ ∈ S[n] be such that x, x′ ∈ In

σ. Also let
δ := diff(x) ≤n−1 diff(x′) =: δ′. Take any i, j such that xi ≥ x j. Since δ ≤n−1 δ

′, it
holds xi − x j = x(1) +

∑σ−1(i)−1
k=1 δk − x(1) −

∑σ−1( j)−1
k=1 δk =

∑σ−1(i)−1
k=σ−1( j) δk ≤

∑σ−1(i)−1
k=σ−1( j) δ

′
k =

x′i−x′j, with convention
∑0

k=1 · · · = 0. Thus, x 4n x′, and the proof is complete.

Corollary 6. Let X ⊂ In be a set such that x, x′ ∈ X iff x(1) = x′(1). Then for any
x, x′ ∈ X if x 4n x′, then there exist k ≥ 2, vectors y{1}, . . . , y{k} with y{1} = x
and y{k} = x′, constants d1, . . . , dk > 0 and ci, . . . , ck ∈ I such that y{i+1} = y{i} +

diInd(y{i} ≥ ci) for all i ∈ [k − 1]. Therefore, if x, x′ ∈ X, and x 4n x′, then x ≤n x′
(of course, the converse implication is not true in general).

Remark 7. Lemma 5 implies that checking whether 4n holds between a pair of
vectors may be performed with an algorithm taking at most O(n log n) time: it is
a matter of finding an ordering permutation of x′ and some simple verifications
taking linear time.

We may now provide an alternative characterization of our class.

Theorem 8. V : In → [0,∞] is a spread measure if and only if

(v1’) for each comonotonic x, x′ such that diff(x) ≤n−1 diff(x′) we have V(x) ≤
V(x′),

(v2’) infx∈In V(x) = 0.

This result follows directly from Lemma 5 and the fact that diff(x) = (0, . . . , 0)
iff there exists c such that x = n ∗ c. It becomes particularly appealing when we
recall the definition of an aggregation function and compare the conditions (v1’)
and (v2’) to (a1) and (a2). In fact, we have what follows.

Corollary 9. Any spread measure V : In → [0,∞] may be generated by a family of
functions {Ãσ : σ ∈ S[n]}, (∀σ ∈ S[n]) Ãσ : [0, b − a]n−1 → [0,∞] fulfills (a1) and
(a2), and for all x and each σ,σ′ with x ∈ In

σ and x ∈ In
σ′ it holds Ãσ(x) = Ãσ′(x).

In such a setting, V(x) = Ãσ(diff(x)) for x ∈ In
σ.

Of course, if V is symmetric, then we may restrict ourselves to the space of
vectors that are already sorted. In such a case, only one generalized aggregation
function is needed to generate V.
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Corollary 10. For any V : In → [0,∞], V|σ fulfills (v1) and (v2) if and only if
there exists Ã : [0, b−a]n−1 → [0,∞] such that V|σ(x) = Ã(diff(x)) fulfills (a1) and
(a2).

Thus, we have established a beautiful connection between spread measures
and aggregation functions.

Additionally, note that if V1, . . . ,Vk are spread measures and Ã : [0,∞]k →

[0,∞] fulfills (a1) and (a2), then V′ such that V′(x) = Ã(V1(x), . . . ,Vk(x)) is also
a spread measure.

5. Classical spread measures and their generalizations

In this section we will provide an overview of descriptive statistics classically
used in exploratory data analysis (all of them are symmetric), show that they are
indeed spread measures according to our definition, and generalize them. This will
lead to very interesting classes of functions that may be used e.g. in group decision
making. Please note that an important step in most of the proofs below consists of
rewriting V(x) in terms of Ã(δ) with δ = diff(x). Such a reparametrization is also
important from the perspective of aggregation functions theory, as it may indicate
some new, not yet explored classes of central tendency measures.

5.1. Distances between all pairs of observations
The first class of spread measures consists of sums of distances between all

pairs of observations in a sample.

Proposition 11. A function V defined for any p ≥ 1 and x ∈ In as V(x) =∑n
i=1

∑n
k=1 |xi − xk|

p is a continuous and symmetric spread measure.

Proof. It is easily seen that V is symmetric and fulfills (v2). Take any x and let
δ = diff(x). Under the convention that

∑0
i=1 · · · = 0 we have:

V(x) = 2
n∑

i=2

i−1∑
k=1

(x(i) − x(k))p = 2
n∑

i=2

i−1∑
k=1

 i−1∑
j=1

δ j −

k−1∑
j=1

δ j


p

= 2
n∑

i=2

i−1∑
k=1

 i−1∑
j=k

δ j


p

,

which is a nondecreasing and continuous function w.r.t. each element in δ. Thus,
V is a spread measure.

Recall that for any x ∈ In and s ≥ 1 such that sx ∈ In we have x 4n sx,
see Remark 2. For any normalizing constant η > 0, a spread measure given by
V(x) =

(
η
∑n

i=1
∑n

k=1 |xi − xk|
p)1/p fulfills (v4), i.e. is homogeneous of degree 1.

11
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Remark 12. It might be shown that the sample variance, Var(x) = 1
n−1

∑n
i=1 (xi − x̄)2,

x̄ = 1
n

∑n
i=1 xi, may be expressed as Var(x) = 1

2n(n−1)

∑n
i=1

∑n
k=1 (xi − xk)2. As a con-

sequence, it is a symmetric and continuous spread measure. In this case, assuming
that δ = diff(x), it holds Var(x) =

∑n−1
i=1

∑n−1
k=1

min{i(n−k),k(n−i)}
n(n−1) δiδk. Moreover, by Re-

mark 4, the standard deviation SD(x) =
√

Var(x) is also a spread measure.
We have

∑n
i=1

∑n
k=1 (xi − xk)2 =

∑n
i=1 2(n − 1)x2

(i) −
∑

1≤i< j≤n 4x(i)x( j). It might be
shown that this formula is maximized e.g. at (b n

2c ∗ b, d n
2e ∗ a) which is then equal

to 2b n
2c(n − b

n
2c)(b − a)2. Thus, V(x) =

√
ηVar(x) fulfills (v1)–(v6) if η = 4n−1

n for
even n and η = 4 n

n+1 otherwise.

Remark 13. The above proposition also implies that the mean difference, defined
as MD(x) = 1

n (n−1)

∑n
i=1

∑n
k=1 |xi − xk|, is a symmetric spread measure. Here if

δ = diff(x), then MD(x) = 2
∑n−1

i=1
i(n−i)
n(n−1)δi.

What is more, note that MD(x) = 2
n(n−1)

∑n
i=1(2i − n − 1)x(i). It is easily seen

that it takes its maximal value e.g. at (b n
2c ∗ b, d n

2e ∗ a) which then is equal to
2

n(n−1)b
n
2cd

n
2e(b − a), i.e. n

2(n−1) (b − a) ≤ (b − a) for even n and (n+1)
2n (b − a) ≤ (b − a)

otherwise. From this it follows that MD fulfills (v3’). If we would like to require
(v3) we may use these normalizing constants.

5.2. Aggregated distance to quantiles
Interestingly, it turns out that any aggregation function on a specific domain

(e.g. the weighted mean, OWA, OWMax operators, etc.) may be used to generate
a spread measure in a quite simple way – basing on the fact that each object of
our interest is translation invariant. It is Corollary 6 which implies that for any
aggregation function A : [0, b − a]n → [0, b − a] a mapping V(x) = A

(
x1 −

x(1), . . . , xn − x(1)
)

is a spread measure. For example, the sample range, given by
Range(x) = x(n) − x(1), is included in this class.

On the other hand, the class of spread measures is in some sense much richer:
such a measure, after a proper translation of its inputs, is not necessarily nonde-
creasing in each variable. For example, let y = (0, 0, 1) and y′ = (0, 0.5, 1). We
have y ≤n y′ and y $n%n y′. However, Var(y) = 1

3 > V(y′) = 1
4 , thus Var does not

fulfill (a1).
Nevertheless, the following generalization of A

(
x1 − x(1), . . . , xn − x(1)

)
might

be interesting as it leads to a proof of the fact that another set of data analysis
tools indeed consists of spread measures. Let us recall the notion of a sample
quantile of order α ∈ [0, 1]. Although there are many various definitions in the
literature and implementations in statistical software packages, see (Hyndman and

12
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Fan, 1996) for a review, it is generally accepted that such an aggregation function
is an OWA operator (Yager, 1988) given by:

Qα(x) = γ x(k) + (1 − γ) x(k+1),

for some γ = γ(α, k) ∈ (0, 1] and k ∈ {bnαc, bnα + 1c}. Also, three special cases
should be included: with Q0 being the sample minimum, Q1 standing for sample
maximum, and Q0.5 being equivalent to the sample median, Med(x) = x((n+1)/2) for
odd n, and Med(x) = 0.5x(n/2) + 0.5x(n/2+1) otherwise. Moreover, for each fixed x
this should be a nondecreasing function of α.

Let us consider the following class of functions, constructed by aggregating
deviations from sample quantiles.

Proposition 14. For each α ∈ [0, 1] and any function Ã : [0, (b − a)]n → [0,∞]
fulfilling (a1) and (a2), the function V : In → [0,∞] given by:

V(x) = Ã (|x1 − Qα(x)| , . . . , |xn − Qα(x)|) (2)

is a spread measure.

Proof. Let γ ∈ (0, 1] and 1 ≤ k < n be such that for all x we have Qα(x) =

γ x(k) + (1 − γ) x(k+1). The function V fulfills (v2), because for all c ∈ I we have
Qα(n ∗ c) = c and by (a2) it holds V(n ∗ c) = Ã(0, . . . , 0) = 0.

Consider any σ and x ∈ In
σ. Let δ̂ = (x(1), diff(x)) and y =

(
|x1 − Qα(x)|,

. . . , |xn − Qα(x)|
)
. Recall that for all j ∈ [n] we have x j =

∑σ−1( j)
l=1 δ̂l and x( j) =∑ j

l=1 δ̂l. Thus:

y j =
∣∣∣x j − Qα(x)

∣∣∣ =

∣∣∣∣∣∣∣∣
σ−1( j)∑

l=1

δ̂l − γ

k∑
l=1

δ̂l − (1 − γ)
k+1∑
l=1

δ̂l

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
σ−1( j)∑

l=1

δ̂l −

k+1∑
l=1

δ̂l + γδ̂k+1

∣∣∣∣∣∣∣∣ .
As V(x) = Ã(y), by nondecreasingness of Ã it suffices to show that as elements in
δ̂ increase, any yi does not decrease. Indeed, we have:

y j =


∑k

l=σ−1( j)+1 δ̂l + (1 − γ) δ̂k+1 for σ−1( j) ≤ k,∑σ−1( j)
l=k+2 δ̂l + γ δ̂k+1 for σ−1( j) > k,

and the proof is complete.

13
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Of course, if we substitute each x j for x( j) in (2) we immediately obtain a
symmetric spread measure. Such a class includes the median absolute deviation,
given by the equation MAD(x) = Med (|x −Med(x)|).

What is more, a difference between sample quantiles V(x) = Qα′(x) − Qα′′(x)
for any α′ ≥ α′′ is also included here. This is because if V(x) = γ′x(k′) + (1 −
γ′)x(k′+1)−γ

′′x(k′′)−(1−γ′′)x(k′′+1) for some γ′, γ′′, k′, k′′, k′′ < k′, then V(x) may be
expressed as γ′

∣∣∣x(k′) − Qα′′(x)
∣∣∣+(1−γ′)

∣∣∣x(k′+1) − Qα′′(x)
∣∣∣. Thus, by Proposition 14,

it is a symmetric spread measure. Among the best known examples of such func-
tions we find the interquartile range given by IQR(x) = Q0.75(x) −Q0.25(x) and of
course the already mentioned sample range.

Proposition 14 indicates some new, possibly interesting spread measures like∑n
i=1(xi − Med(x))2 (if we would like to use it in statistics, then of course we

should normalize its value somehow) or e.g. a non-necessarily symmetric function∑n
i=1 wi |xi −Med(x)|, which can be of potential interest in DM problems.

Additionally, note that as |sxi − Qα(sx)| = s|xi − Qα(x)|, V is homogeneous of
degree 1 if and only if Ã fulfills (v4). For example, in the class of quasi-arithmetic
means Ã(x) = f −1(1

n

∑
i f (xi)) only the geometric mean (

∏
i xi)1/n and root-mean-

power ( 1
n

∑
i xp

i )1/p meets (v4), see (Grabisch et al., 2009, Theorem 4.15 (ii)).

5.3. Weighted average distance to a weighted average

Note that the function Ã(x) =
(∑n

i=1
1
n |xi|

p
)1/p

is symmetric, fulfills (a2), and is
nondecreasing on In. In this vector space it coincides with the Lp-norm || · ||p.
Proposition 14 implies that, given the norm-generated metric dp, it holds that
dp(x, n∗Qα(x)) is a spread measure. Such a function has an intuitive interpretation:
it denotes a distance to some sample quantile.

In this section we will study functions which generalize spread measures of
this type. First of all, we will substitute Qα for any weighted arithmetic mean
(in the nonsymmetric case) or an OWA operator. Secondly, we will consider a
weighted distance. We should note that, however, not all such functions fulfill
(v1). For example, if F(x) =

∑5
i=1 0.2(xi − (0.5x1 + 0.5x5))2, then F(0, 0.9, 0.9, 0.9,

0.9) = 0.2025 and F(0, 0.9, 0.9, 0.9, 1) = 0.196.

Let w ∈ [0, 1]n be a weighting vector, i.e. such that
∑n

i=1 wi = 1. Recall that the
weighted arithmetic mean is given by WAMw(x) =

∑n
i=1 wi xi. It is an idempotent

aggregation function ((∀c ∈ I) WAMw(n ∗ c) = c), for which for any x ∈ In and s, t
with sx + t ∈ In it holds WAMw(sx + t) = sWAMw(x) + t.

If we substitute xi for x(i) in the definition of WAMw, then we obtain a sym-
metric aggregation function OWAw called ordered weighted averaging operator,

14
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see (Yager, 1988).

Definition 15. Given p ≥ 1 and weighting vectors v,w, the WDpWAMv,w operator
for p < ∞ is defined as

WDpWAMv,w(x) =

 n∑
i=1

vi

∣∣∣xi −WAMw(x)
∣∣∣p1/p

,

and for p = ∞ as:

WDpWAMv,w(x) = max
i=1,...,n

vi |xi −WAMw(x)| .

We immediately have that WDpWAM operators fulfill the following properties.

Proposition 16. For any p ≥ 1, and all weighting vectors v, w, WDpWAMv,w
fulfills (v0), (v2), (v3’), and (v4).

The elementary proof is omitted.

In many practical cases we will often be interested in the p ∈ {1, 2,∞} case
with the setting vi = wi.

Moreover WDpOWAv,w may be defined as symmetrized version of WDpWAMv,w:
in order to fulfill (v6) we substitute xi for x(i); of course vi = wi = 1

n gives
WDpOWAv,w(x) = WDpWAMv,w(x). Note that if OWAw denotes a sample quan-
tile, then we may make use of Proposition 14.

In the following subsections we will examine when (v1) is fulfilled for p =

1, 2,∞. Before that we shall provide the following auxiliary result. Fix σ ∈ S[n]

and take any x ∈ In
σ. Assuming that δ = diff(x), we have:

WAMw|σ(x) =

n∑
i=1

wσ(i)

xσ(1) +

i−1∑
j=1

δ j

 = xσ(1) +

n∑
i=2

wσ(i)

i−1∑
j=1

δ j


= xσ(1) +

n−1∑
i=1

δi

n∑
j=i+1

wσ( j)

 = xσ(1) +

n−1∑
i=1

δiζ
σ
i , (3)

with ζσi =
∑n

j=i+1 wσ( j), i ∈ [n − 1]. Note that ζσ ∈ [0, 1]n−1 is nonincreasing and
1 − ζσi =

∑i
j=1 wσ( j).

15



Please cite this paper as: Gagolewski M., Spread measures and their relation to aggregation functions,
European Journal of Operational Research 241(2), 2015, pp. 469–477, doi:10.1016/j.ejor.2014.08.034.

5.3.1. WD2WAM operators
Let us begin with examining the p = 2 case. We have already noted that not

all the functions of this kind fulfill (v1). In fact, we have what follows.

Proposition 17. Fixσ ∈ S[n], weighting vectors v,w, and let V(x) =
∑n

i=1 vi

(
xi −

∑n
j=1 w jx j

)2
.

Then V|σ fulfills (v1) if and only if v and w are such that for all 1 ≤ a < b ≤ n − 1
it holds: n∑

i=b+1

vσ(i)

  a∑
i=1

wσ(i)

 +

 a∑
i=1

vσ(i)

  n∑
i=b+1

wσ(i)

 ≥  a∑
i=1

wσ(i)

  n∑
i=b+1

wσ(i)

 .
Proof. Let x ∈ In

σ and assume that δ := diff(x). By Eq. (3) for ζσi =
∑n

j=i+1 wσ( j),
i ∈ [n − 1], we have:

V|σ(x) = V|σ(δ) = vσ(1)

 n−1∑
i=1

δi ζ
σ
i

2

+

n−1∑
i=1

vσ(i+1)

 i∑
j=1

δ j −

n−1∑
j=1

δ j ζ
σ
j


2

.

Temporarily, we may of course treat V|σ as a function of δ. We have to determine
for which v,w the function V|σ is nondecreasing w.r.t. each element in δ. As
V|σ is differentiable, we may examine all its partial derivatives. Assuming that
ξσi =

∑n
j=i+1 vσ( j), i ∈ [n − 1], for any a ∈ [n − 1] it holds:

1
2
∂

∂δa
V|σ(δ) = vσ(1) ζ

σ
a

n−1∑
i=1

δiζ
σ
i +

n−1∑
i=1

vσ(i+1)
(
Ind(a ≤ i) − ζσa

)  i∑
j=1

δ j −

n−1∑
j=1

δ jζ
σ
j


= vσ(1)ζ

σ
a

n−1∑
i=1

δiζ
σ
i + ζσa

n−1∑
i=1

vσ(i+1)

n−1∑
j=1

δ jζ
σ
j −

n−1∑
i=a

vσ(i+1)

n−1∑
j=1

δ jζ
σ
j

−ζσa

n−1∑
i=1

vσ(i+1)

i∑
j=1

δ j +

n−1∑
i=a

vσ(i+1)

i∑
j=1

δ j

=

(ζσa − ξσa )
n−1∑
i=1

δiζ
σ
i

 +

 n−1∑
i=1

((
ξσa ∧ ξ

σ
i
)
− ξσi ζ

σ
a
)
δi


=

n−1∑
i=1

δi
(
ζσi ζ

σ
a − ζ

σ
i ξ

σ
a + ξσa ∧ ξ

σ
i − ξ

σ
i ζ

σ
a
)

= (∗).

We of course have to determine in which cases it holds ∂V|σ/∂δa ≥ 0 for all a
and δ. However, it is easily seen that it is necessary and sufficient to consider only

16
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the diff-vectors of the form δ = (0, . . . , 0, δb, 0, . . . , 0), i.e. with δb > 0, δi = 0, for
all b, i = 1, . . . , n − 1 such that b , i.

Therefore, at this point of the proof we have already shown that V|σ is a spread
measure if and only if for all a, b = 1, . . . , n − 1 it holds (∗) ≥ 0. What is more,
as ξσ is sorted nonincreasingly, we may note that the cases (a, b) = (i, j) and
(a, b) = ( j, i) are equivalent:

(i) If a > b, then (∗) = ξσa (1 − ζσb ) + ζσa (ζσb − ξ
σ
b );

(ii) If b < a, then (∗) = ξσb (1 − ζσa ) + ζσb (ζσa − ξ
σ
a ).

Additionally, for a = b the condition is always true:

(∗) = ζσa
2
− 2ξσa ζ

σ
a + ξσa ,

as this is an upward-open parabola with discriminant ∆(ξσa ) = 4 ξσa (ξσa − 1) ≤ 0.
Thus, we only have to check whether

ξδb(1 − ζδa) + (ζδa − ξ
δ
a)ζδb ≥ 0

is true for 1 ≤ a < b ≤ n − 1.
Now let us rewrite the conditions so that they directly depend on v and w rather

than ξδ and ζδ, respectively:

ξσb (1 − ζσa ) − ξσa ζ
σ
b ≥ −ζσa ζ

σ
b

ξσb (1 − ζσa ) − ξσa ζ
σ
b + ζσb ≥ −ζσa ζ

σ
b + ζσb

ξσb (1 − ζσa ) + (1 − ξσa )ζσb ≥ (1 − ζσa )ζσb n∑
i=b+1

vσ(i)

  a∑
i=1

wσ(i)

 +

 a∑
i=1

vσ(i)

  n∑
i=b+1

wσ(i)

 ≥  a∑
i=1

wσ(i)

  n∑
i=b+1

wσ(i)

 .
Thus, the proof is complete.

Of course, in case of symmetric WD2OWAv,w spread measures we should ex-
amine if the conditions mentioned in Proposition 17 hold only in the case σ(i) = i.
For nonsymmetric ones, unfortunately, we should consider each possible permu-
tation σ. However, it is easily seen that if vi = wi for all i ∈ [n], then V|σ fulfills
(v1) for every σ ∈ S[n]. Thus, each WD2WAMw,w is a spread measure. For exam-
ple, after a proper transformation of WD2WAMw,w in case of vi = wi = 1

n we again
obtain the standard deviation and sample variance.
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5.3.2. WD1WAM operators
Furthermore, let us consider the p = 1 case. We should note that not all

WD1WAM operators fulfill (v1).

Example 4. Let V(x) =
∑n

i=1 0.2|xi−(0.5x1+0.5x5)|. We have V(0, 0.9, 0.9, 0.9, 0.9) =

0.45 > V(0, 0.9, 0.9, 0.9, 1) = 0.44.

The WD1WAM operators that fulfill (v1) are characterized in the following
proposition.

Proposition 18. Fixσ ∈ S[n], weighting vectors v,w, and let V(x) =
∑n

i=1 vi

∣∣∣xi −
∑n

j=1 wix j

∣∣∣.
The V|σ fulfills (v1) if and only if v,w are such that for all r, k ∈ [n − 1] it holds

r∑
i=1

wσ(i)

 k∑
i=1

vσ(i) −

n∑
i=k+1

vσ(i)

 ≤ r∑
i=1

vσ(i) for r < k,

n∑
i=r+1

wσ(i)

 n∑
i=k+1

vσ(i) −

k∑
i=1

vσ(i)

 ≤ n∑
i=r+1

vσ(i) for r ≥ k.

Proof. Let x ∈ In
σ and δ := diff(x). Assuming that ζσi =

∑n
j=i+1 wσ( j) and ξσi =∑n

j=i+1 vσ( j), i ∈ [n − 1], let k = min{k ∈ [n − 1] :
∑k

i=1 δi −
∑n−1

i=1 δiζ
σ
i ≥ 0}. By

Eq. (3) we have:

V|σ(x) = V|σ(δ) = vσ(1)

∣∣∣∣∣∣∣
n−1∑
i=1

δiζ
σ
i

∣∣∣∣∣∣∣ +

n−1∑
i=1

vσ(i+1)

∣∣∣∣∣∣∣
i∑

j=1

δ j −

n−1∑
j=1

δ jζ
σ
j

∣∣∣∣∣∣∣
= vσ(1)

n−1∑
i=1

δiζ
σ
i +

k−1∑
i=1

vσ(i+1)

 n−1∑
j=1

δ jζ
σ
j −

i∑
j=1

δ j

 +

n−1∑
i=k

vσ(i+1)

 i∑
j=1

δ j −

n−1∑
j=1

δ jζ
σ
j


= (1 − ξσk )

n−1∑
i=1

δiζ
σ
i − ξ

σ
k

n−1∑
i=1

δiζ
σ
i −

k−1∑
i=1

(ξσi − ξ
σ
k )δi +

n−1∑
i=k

ξσi δi +

k−1∑
i=1

ξσk δi

=

n−1∑
i=1

(
(1 − 2ξσk )ζσi + Ind(i < k)(2ξσk − ξ

σ
i ) + Ind(i ≥ k)ξσi

)
δi.

We shall find out for which ζσ, ξσ it holds V|σ(δ′) − V|σ(δ) ≥ 0 for any r ∈ [n − 1]
and ∆ > 0, where δ′ = (δ1, . . . , δr−1, δr + ∆, δr+1, . . . , δn−1). Assuming that k′ =

min{k′ ∈ [n − 1] :
∑k′

i=1 δ
′
i −

∑n−1
i=1 δ

′
iζ
σ
i ≥ 0}, let us consider three cases.

(i) If k′ = k, then we have:

V|σ(δ′) − V|σ(δ) =
(
(1 − 2ξσk )ζσr + Ind(r < k)(2ξσk − ξ

σ
r ) + Ind(r ≥ k)ξσr

)
∆.
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First of all, we should note that for each ζσ and k there always exists δ such that
for some δ′ it holds k′ = k. Therefore, V|σ in order to fulfill (v1) must necessarily
be generated by ζσ and ξσ such that:

(1 − 2ξσk )ζσr + 2ξσk − ξ
σ
r ≥ 0 if r < k,

(1 − 2ξσk )ζσr + ξσr ≥ 0 if r ≥ k.

for all r, k ∈ [n − 1]. The condition for r < k is equivalent to:

(1 − 2ξσk )ζσr + 2ξσk − ξ
σ
r ≥ 0

(1 − 2ξσk )ζσr − (1 − 2ξσk ) + (1 − ξσr ) ≥ 0
(1 − ζσr )(1 − 2ξσk ) ≤ (1 − ξσr )

r∑
i=1

wσ(i)

 k∑
i=1

vσ(i) −

n∑
i=k+1

vσ(i)

 ≤ r∑
i=1

vσ(i),

and the second condition to:

(1 − 2ξσk )ζσr + ξσr ≥ 0
n∑

i=r+1

wσ(i)

 n∑
i=k+1

vσ(i) −

k∑
i=1

vσ(i)

 ≤ n∑
i=r+1

vσ(i).

(ii) Now we shall examine the case k′ > k. Let us assume that conditions derived
in case (i) hold. Note that we have WAMw(x′) − WAMw(x) = ζσr ∆, where x′i =

xi + Ind(i ≥ r)∆. By the definition of k′ and k it holds xσ(k′) −WAMw(x) ≥ 0 and
xσ(k′) + Ind(r < k′)∆ −WAMw(x) − ζσr ∆ < 0. Thus, it must necessarily hold that
r ≥ k′ and −ζσr ∆ < WAMw(x) − xσ(k′) ≤ 0.

V|σ(δ′) − V|σ(δ) −
(
Ind(r < k′)(2ξσk′ − ξ

σ
r ) + Ind(r ≥ k′)ξσr

)
∆

= (1 − 2ξσk′)ζ
σ
r ∆ + (2ξσk − 2ξσk′)

n−1∑
i=1

ζσi δi −

k−1∑
i=1

(2ξσk − 2ξσk′)δi −

k′−1∑
i=k

(2ξσi − 2ξσk′)δi

≥ (1 − 2ξσk′)ζ
σ
r ∆ + 2(ξσk − ξ

σ
k′)

 n−1∑
i=1

δiζ
σ
i −

k′−1∑
i=α

δi


= (1 − 2ξσk′)ζ

σ
r ∆ + 2(ξσk − ξ

σ
k′)(WAMw(x) − xσ(k′))

≥ (1 − 2ξσk′)ζ
σ
r ∆ − 2(ξσk − ξ

σ
k′)ζ

σ
r ∆ = (1 − 2ξσk )ζσr ∆.

As r ≥ k′, it holds V|σ(δ′) − V|σ(δ) ≥ (1 − 2ξσk )ζσr ∆ + ξσr ∆ ≥ 0. We see that the
necessary conditions derived in case (i) are sufficient in case (ii).
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(iii) In the third case we assume that k′ < k. Here we surely have r ≤ k′, as∑k′
i=1 δi −

∑n−1
i=1 ζ

σ
i δi < 0 and

∑k′
i=1 δi + Ind(r ≤ k′)∆ −

∑n−1
i=1 ζ

σ
i δi − ζ

σ
r ∆ ≥ 0.

V|σ(δ′) − V|σ(δ) −
(
Ind(r < k′)(2ξσk′ − ξ

σ
r ) + Ind(r ≥ k′)ξσr

)
∆

= (1 − 2ξσk′)ζ
σ
r ∆ + (2ξσk − 2ξσk′)

n−1∑
i=1

ζσi δi −

k′−1∑
i=1

(2ξσk − 2ξσk′)δi −

k−1∑
i=k′

(2ξσk − 2ξσi )δi

= (1 − 2ξσk′)ζ
σ
r ∆ + (2ξσk′ − 2ξσk )

 k−1∑
i=1

δi −

n−1∑
i=1

ζσi δi

 +

k−1∑
i=k′

(2ξσk′ − 2ξσi )δi

≥ (1 − 2ξσk′)ζ
σ
r ∆ + (2ξσk′ − 2ξσk )(ζσr − 1)∆ + (2ξσk′ − 2ξσk )

 k−1∑
i=1

δi + ∆ −

n−1∑
i=1

ζσi δi − ζ
σ
r


≥ (1 − 2ξσk )ζσr ∆ − (2ξσk′ − 2ξσk )∆.

As r ≤ k′ and for r = k′ it trivially holds ξσr = 2ξσk′ − ξ
σ
r , we have:

V|σ(δ′) − V|σ(δ) ≥ (1 − 2ξσk )ζσr ∆ − (2ξσk′ − 2ξσk )∆ + (2ξσk′ − ξ
σ
r )∆

= (1 − 2ξσk )ζσr ∆ + (2ξσk − ξ
σ
r )∆ ≥ 0.

Thus, our necessary conditions are sufficient in all cases.

Please be noticed that if vi = wi for all i ∈ [n], then the conditions in the above
theorem are fulfilled for any σ. Thus, for all w the WD1WAMw,w operator is a
spread measure. For example, with this result we may imply that Fisher’s (1922)
mean error, ME(x) = 1

n

√
π
2

∑n
i=1 |xi − x̄| is a spread measure.

5.3.3. WD∞WAM operators
In the p = ∞ case, v = w does not imply that (v1) hold.

Example 5. Let w = v = (0.2, 0, 0.5, 0, 0.05, 0.25), x = (0.12, 0.19, 0.77, 0.39, 0, 0.9),
and x′ = (0.22, 0.29, 0.87, 0.49, 0, 1). We have x 4n x′, but WD∞WAM(x)v,w '

0.1028 > WD∞WAM(x′)v,w ' 0.1018.

As here diverse values in v cause some interpretation difficulties, we will re-
strict ourselves to the case vi = 1/n.

Proposition 19. For anyσ ∈ S[n] and weighting vector w, let V(x) = maxi=1,...,n

∣∣∣xi −
∑n

j=1 w jx j

∣∣∣.
Then V|σ fulfills (v1).
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Proof. Let x ∈ In
σ and δ := diff(x). Recalling how we have rewritten the definition

of WAMw in Eq. (3) we have:

V|σ(x) = V|σ(δ) =

n−1∑
i=1

δiζ
σ
i ∨

n−1∨
i=1

∣∣∣∣∣∣∣
i∑

j=1

δ j −

n−1∑
j=1

δ jζ
σ
j

∣∣∣∣∣∣∣ =

n−1∑
i=1

ζσi δi ∨

n−1∑
i=1

(1 − ζσi )δi.

We see that V|σ is a nondecreasing function of elements in δ, thus it fulfills (v1).

In other words, this result implies that if η = (n ∗ 1
n ), then WD∞WAMη,w and

WD∞OWAη,w are spread measures.

6. Discussion

In this paper we have introduced a new family of functions that aim to syn-
thesize numeric vectors: measures of (absolute) data spread, variability, or scatter.
Although particular elements of this class have been studied in the literature for
quite a long time – especially in probability and statistics – the presented results
introduce them to the domain of aggregation theory and decision making. Thus,
together with aggregation (averaging) functions and (fuzzy) logical connectives,
spread measures are another examples of methods to reveal new “dimensions” of
data being synthesized.

Of course, much still has to be done to understand the behavior of such mea-
sures better. Special attention should be paid to the study of the relation be-
tween spread measures for different vector arities (extended spread measures,
i.e. functions in

⋃∞
n=1 In, cf. Beliakov and James, 2013; Calvo and Mayor, 1999;

Gagolewski and Grzegorzewski, 2011), possibly in some connection with multi-
argument distances (Martin and Mayor, 2011).

Also, it is known that averaging aggregating functions may be obtained by
minimizing some penalty P, which can be interpreted as a measure of consensus
between the input vector and output value, see (Calvo and Beliakov, 2010; Mesiar,
2007), i.e. A(x) = arg miny P(x, y). Whether a similar nice interpretation may
be given for spread measures (of course, not when we represent V(x) directly as
Ã(diff(δ)), which leads to quite expectable outcomes) is definitely worth exploring.

Finally, we should note that exploratory data analysis also knows of some
“normalized” measures of relative spread. For instance, the well known (unit-
free) Gini coefficient, defined as G(x) = MD(x)/2x̄ is definitely not a measure
of absolute spread. This is because it does not even fulfill (v0): G(0, 2, 4) =
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2/3, and G(2, 4, 6) = 1/3. Moreover, even though (0, 2, 4) 4n (0, 3, 5), we have
G(0, 3, 5) = 5/8 < 2/3 = G(0, 2, 4). A similar observation may be made about the
so-called coefficient of variation, CV(x) =

√
Var(x)/x̄. Both functions take into

account the order of magnitude of the observations, and are ratio scale invariant
(i.e. e.g. CV(sx) = CV(x)) and continuous but not translation invariant.

More generally, the study of objects of the form V(x)/A(x), where V is a spread
measure, and A is an aggregation function, could be an interesting aim of future
research.
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