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Abstract. The use of supervised learning techniques for fitting weights
and/or generator functions of weighted quasi-arithmetic means – a spe-
cial class of idempotent and nondecreasing aggregation functions – to
empirical data has already been considered in a number of papers. Nev-
ertheless, there are still some important issues that have not been dis-
cussed in the literature yet. In the first part of this two-part contribution
we deal with the concept of regularization, a quite standard technique
from machine learning applied so as to increase the fit quality on test
and validation data samples. Due to the constraints on the weighting
vector, it turns out that quite different methods can be used in the cur-
rent framework, as compared to regression models. Moreover, it is worth
noting that so far fitting weighted quasi-arithmetic means to empirical
data has only been performed approximately, via the so-called lineariza-
tion technique. In this paper we consider exact solutions to such special
optimization tasks and indicate cases where linearization leads to much
worse solutions.
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1 Introduction

In various situations, one is faced with a need to combine n ≥ 2 numeric values
in the unit interval, so that a single representative output is produced. Usually,
some idempotent aggregation function, see, e.g., [7,13], is the required data fusion
tool.

Definition 1. We say that F : [0, 1]n → [0, 1] is an idempotent aggregation
function, whenever it is nondecreasing in each variable, and for all x ∈ [0, 1] it
holds F(x, . . . , x) = x.
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Among useful idempotent aggregation functions we find weighted quasi-
arithmetic means.

Definition 2. Let ϕ : [0, 1] → R̄ be a continuous and strictly monotonic func-
tion and w be a weighting vector of length n, i.e., one such that for all i it holds
wi ≥ 0 and

∑n
i=1 wi = 1. Then a weighted quasi-arithmetic mean generated by

ϕ and w is an idempotent aggregation function WQAMeanϕ,w : [0, 1]n → [0, 1]
given for x ∈ [0, 1]n by:

WQAMeanϕ,w(x) = ϕ−1

(
n∑
i=1

wiϕ(xi)

)
= ϕ−1

(
wTϕ(x)

)
.

Here are a few interesting cases in the above class:

– WAMeanw(x) =
∑n
i=1 wixi = wTx,

(weighted arithmetic mean, convex combination of inputs, ϕ(x) = x)
– WHMeanw(x) = 1∑n

i=1 wi/xi
, (weighted harmonic mean, ϕ(x) = 1/x)

– WGMeanw(x) =
∏n
i=1 x

wi
i , (weighted geometric mean, ϕ(x) = log x)

– WPMeanr,w(x) = (
∑n
i=1 wix

r
i )

1/r
for some r 6= 0,

(weighted power mean, ϕ(x) = xr)
– WEMeanγ,w(x) = 1

γ log (
∑n
i=1 wie

γxi) for some γ 6= 0.

(weighted exponential mean, ϕ(x) = eγx)

Let us presume that we observe m ≥ n input vectors X = [x(1), . . . ,x(m)] ∈
[0, 1]n×m together with m desired output values Y = [y(1), . . . , y(m)] ∈ [0, 1]1×m

and that we would like to fit a model that determines the best functional relation-
ship between the input values and the desired outputs. Generally, such a task
is referred to as regression in machine learning. Nevertheless, classical regres-
sion models do not guarantee any preservation of important algebraic properties
like the mentioned nondecreasingness or idempotence. Therefore, in our case,
for a fixed generator function ϕ, we shall focus on the task concerning fitting a
weighted quasi-arithmetic mean WQAMeanϕ,w, compare, e.g., [4,7,12,21], to an
empirical data set.

Given a loss function E : Rm → [0,∞) that is strictly decreasing towards 0,
E(0, . . . , 0) = 0, the task of our interest may be expressed as an optimization
problem:

minimize E

(
ϕ−1

(
n∑
i=1

wiϕ(x
(1)
i )

)
− y(1), . . . , ϕ−1

(
n∑
i=1

wiϕ(x
(m)
i )

)
− y(m)

)

with respect to w, under the constraints that 1Tw = 1 and w ≥ 0. Typically,
E is an Lp norm, in particular: E(e1, . . . , em) =

√∑m
i=1 e

2
i (least squared error

fitting, LSE), E(e1, . . . , em) =
∑m
i=1 |ei| (least absolute deviation fitting, LAD),

or E(e1, . . . , em) =
∨m
i=1 |ei| (least maximum absolute deviation fitting, LMD).

In the weighted arithmetic mean case (ϕ(x) = x), it is well-known that an
LSE fit can be expressed as a quadratic programming task, and both LAD and
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LMD fits may be solved by introducing a few auxiliary variables and then by
applying some linear programming solvers, see [6,9,12].

More generally, for arbitrary but fixed ϕ (note that if ϕ is unknown one
may rely on a notion of spline functions to model a generator function, see
[2,3,5,6,9,10]), the weight fitting task has up to now been solved approximately
via a technique called linearization, compare [5,6,8,9,19]. Observing that if y(j)

is not subject to any measurement error, i.e., we have ϕ−1
(∑n

i=1 wiϕ(x
(j)
i )
)

=

y(j), instead of minimizing a function of ϕ−1
(∑n

i=1 wiϕ(x
(j)
i )
)
− y(j) we may

consider a function of
∑n
i=1 wiϕ(x

(j)
i ) − ϕ(y(j)). Thus, the input and output

values can be transformed prior to applying a weight fit procedure and then we
may proceed in the same manner as when ϕ(x) = x (and in fact deal with a
linear interpolation problem). However, in practice this is rarely the case.

What is more, as noted recently in [12], we usually observe that a model may
be overfit to a training data set and thus perform weakly on test or validation
samples. Also, sometimes we would like to fit a function which is nondecreasing
and idempotent but the input values need to be properly normalized prior to
aggregate them so that these two important properties are meaningful.

The aim of this two-part paper is to complement the mentioned results (and
extend the preliminary outcomes listed in [12]) concerning fitting of weighted
quasi-arithmetic means (weighted arithmetic means in particular). In Section 2
we discuss possible ways to fit a weighted quasi-arithmetic mean without re-
lying on the linearization technique. Moreover, we perform various numerical
experiments that enable us to indicate in which cases linearization leads to a
significant decrease in the fit quality. In Section 3 we discuss different ways of
regularizing a model so as to prevent overfitting. One of the possible approaches
consists of adding a special penalty, which is a common procedure in machine
learning. However, as parameters of our model fulfill specific constraints (non-
negative weights adding up to 1), other ways are possible in our setting too.
Section 4 concludes this part of the contribution.

Moreover, in the second part [1] we deal with the problem of properly nor-
malizing (transforming) discordant input values in such a way that idempotent
aggregation functions may be fit. We present an application of such a procedure
in a classification task dealing with the identification of pairs of similar R [17]
source code chunks.

2 Linearization

From now on let us assume that E(e1, . . . , em) =
√∑m

i=1 e
2
i , i.e., we would like

to find a least squares error fit. Such an approach is perhaps most common in
machine learning literature [14]. What is more, most of the ideas presented in
this paper can be quite easily applied in other settings.

Torra in [19,20] (compare also, e.g., [6,8,9]) already discussed weighted quasi-
arithmetic mean fitting tasks. Nevertheless, it was noted that the problem is
difficult in general, so one may simplify the problem assuming that the desired

3

http://dx.doi.org/10.1007/978-3-319-40581-0_62


Please cite this paper as: Bartoszuk M., Beliakov G., Gagolewski M., James S., Fitting aggregation functions to
data: Part I – Linearization and regularization, In: Carvalho J.P. et al. (eds.), Information Processing and
Management of Uncertainty in Knowledge-Based Systems, Part II (Communications in Computer and

Information Science 611), Springer, 2016, pp. 767–779, doi:10.1007/978-3-319-40581-0 62.

outputs are not subject to errors. In such a case, noting that a fixed generator
function ϕ is surely invertible, we have for all j:

n∑
i=1

wiϕ(x
(j)
i ) = ϕ(y(j)).

Using this assumption, instead of minimizing:

‖ϕ−1
(
wTϕ(X)

)
−Y‖22

one may decide to minimize a quite different (in general) goodness of fit measure:

‖wTϕ(X)− ϕ(Y)‖22.

Such an approach is often called linearization of inputs.
Let us suppose, however, that we would like to solve the original weight fit

problem and not the simplified (approximate) one.

Example 1 ([12]). Suppose that n = 5 and we are given m = 9 toy data points
given as below. Here Y was generated using w = (0.33, 0.43, 0.10, 0.08, 0.06) and
ϕ(x) = x2 with white noise was added (σ = 0.05).

j 1 2 3 4 5 6 7 8 9

x
(j)
1 0.12 0.48 0.65 0.07 0.37 0.22 0.29 0.57 0.84

x
(j)
2 0.73 0.41 0.45 0.79 0.92 0.23 0.90 0.40 0.57

x
(j)
3 0.43 0.84 0.70 0.96 0.81 0.86 0.72 0.53 0.42

x
(j)
4 0.52 0.75 0.48 0.40 0.62 0.28 0.80 0.92 0.79

x
(j)
5 0.69 0.70 0.24 0.22 0.92 0.34 0.15 0.50 0.50

y(j) 0.65 0.58 0.70 0.51 0.82 0.56 0.70 0.64 0.75

Here are the true d1, d2, and d∞ error measures in the case of the linearized
and the exact LSE and LAD minimization tasks.

E d1 d2 d∞

LAD – linearization 0.7385 0.4120 0.2798
LSE – linearization 0.7423 0.2859 0.1626
LAD – optimal 0.7157 0.3170 0.2044
LSE – optimal 0.7587 0.2817 0.1501

In the above example, the differences are relatively small, but not negligi-
ble. While the use of the linearization technique for least-squared error fitting of
quasi-arithmetic means will often lead to reliable results, there are clearly some
situations where such a technique may not be justified. Fitting to the transformed
dataset ϕ(X), ϕ(Y) essentially stretches the space along which the residuals are
distributed and for some functions this will have a larger impact than others.
As an example, consider the geometric mean with generator ϕ(x) = log x. For
lower values of y, differences in the transformed residuals can become dispropor-
tionately large and pull the weights towards these data points. Further on we
shall perform a few numerical experiments to indicate the generator functions
that lead to much greater discrepancies.
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2.1 Algorithms

We aim to:

minimize

m∑
j=1

(
ϕ−1

(
n∑
i=1

wiϕ
(
x
(j)
i

))
− y(j)

)2

w.r.t. w

subject to w ≥ 0 and 1Tw = 1. By homogeneity and triangle inequality of ‖ · ‖2
we have that this is a convex optimization problem.

A Solution Based on a Nonlinear Solver. First of all, we may consider the
above as a generic nonlinear optimization task. To drop the constraints on w,
we can use an approach considered (in a different context) by Filev and Yager
[11], see also [20]. We take a different parameter space, λ ∈ Rn, such that:

wi =
exp(λi)∑n
k=1 exp(λk)

.

Assuming that ϕ−1 is differentiable, let us determine the gradient ∇E(λ). For
any k = 1, . . . , n it holds:

∂

∂λk
E(λ) = 2

exp(λk)∑n
i=1 exp(λi)

m∑
j=1

ϕ−1
∑n

i=1 exp(λi)ϕ
(
x
(j)
i

)
∑n
i=1 exp(λi)

− y(j)


·(ϕ−1)′

∑n
i=1 exp(λi)ϕ

(
x
(j)
i

)
∑n
i=1 exp(λi)

 ·
ϕ(x(j)k )−

∑n
i=1 exp(λi)ϕ

(
x
(j)
i

)
∑n
i=1 exp(λi)

 .

Assuming that Z = wTϕ(X) and w = exp(λ)/1T exp(λ), we have:

∇E(λ) = 2 ·w ·

(((
φ−1(Z)− Y

)
· (ϕ−1)′ (Z)

)
×
(
ϕ(X)T − Z

))
,

where ·,− stand for elementwise vectorized multiplication and subtraction, re-
spectively, × denotes matrix multiplication, and ϕ(X)T −Z means that we sub-
tract Z from each column in ϕ(X)T . The solution may be computed using, e.g.,
a quasi-Newton nonlinear optimization method by Broyden, Fletcher, Goldfarb
and Shanno (the BFGS algorithm, see [16]). However, let us note that while
using the mentioned reparametrization, the BFGS algorithm may occasionally
fail to converge as now the solution is not unique.

Another possible way of solving the above problem would be to rewrite the
objective as a function of n − 1 variables v1, . . . , vn−1 such that wi = vi for
i = 1, . . . , n − 1 and wn = 1 −

∑n−1
i=1 vi. This is a constrained optimization

problem, but the constraints on v are linear: v ≥ 0 and 1Tv ≤ 1. With generic
nonlinear solvers, such an optimization task is usually determined by adding
an appropriate barrier function (e.g., logarithmic barrier, see [16]) term to the
objective function.
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Compensation Factors in Linearization. Another possible way is to ap-
ply a compensation factor such that for any residual in the linearization tech-

nique v(j) =
∑n
i=1 wiϕ(x

(j)
i ) − ϕ(y(j)), we estimate the true residual r(j) =

ϕ−1
(∑n

i=1 wiϕ(x
(j)
i )
)
− y(j).

We begin with an estimate of our true residual, which we denote by rest. The
estimated residual for any known v(j) is then calculated as:

est(r(j)) =
v(j)rest

ϕ(y(j) + rest)− ϕ(y(j))
.

In other words, we calculate the average rate of change between y(j) and
y(j)+rest and then use the reciprocal of this as our compensation factor. A visual
illustration of this process is shown in Figure 1.

Where y(j) + rest is outside our domain [0, 1], we can instead use the aver-
age rate of change between y(j) and the boundary point (or very close to the
boundary if ϕ is infinite).

Obviously the average rate of change will differ depending on whether v(j)

is positive or negative, and so we can split v(j) into its positive and negative
components so that a different compensation factor can be applied.

We let v(j) = v
(j)
+ +v

(j)
− where v

(j)
+ ≥ 0, v

(j)
− ≤ 0 which we then use as decision

variables in our quadratic programming task. We optimize with respect to these,
and add constraints:

n∑
i=1

wiϕ(x
(j)
i ) + v

(j)
+ + v

(j)
− = ϕ(y(j)).

In summary, we have the following quadratic programming task.

Fig. 1. Illustration of how compensation factor is calculated. From a generating func-
tion ϕ we estimate r(j) using the average rate of change between y(j) and y(j) + rest.
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minimize
m∑
j=1

(
v
(j)
+ rest

ϕ(y(j)+rest)−ϕ(y(j))

)2

+

(
v
(j)
− rest

ϕ(y(j)−rest)−ϕ(y(j))

)2

w.r.t. w,v−,v+

such that
n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,∑n
i=1 wiϕ(x

(j)
i ) + v

(j)
+ + v

(j)
− = ϕ(y(j)),

v
(j)
+ ≥ 0,−v(j)− ≥ 0, j = 1, . . . ,m.

Since the usefulness of this method will depend on rest, we can also set up
a bilevel optimization problem such that it is optimized for the given training
set. Nevertheless, note that this time we deal with an approximate method. The
following experiments show that the method is useful for compensating for the
stretching effect of the generating function and also help us identify some specific
instances of where linearization by itself has poor performance.

2.2 Experiments

For each of the generating functions ϕ(x) = x2, x3, x1/2, log x we created data
sets with m = 20 and m = 100 test points. For each trial, we generated w
randomly and then after calculating the desired output values we added Gaussian
noise with σ = 0.05 and 0.1. We then measured the LSE using:

(i) the linearization technique where the data are transformed using ϕ(X), ϕ(Y),

i.e., the sum of
(∑n

i=1 wiϕ(x
(j)
i )− ϕ(y(j))

)2
,

(ii) the method proposed here with rest = 0.1,
(iii) the method proposed here with rest optimized,
(iv) a general non-linear optimization solver.

The x(j) vectors were generated both from the uniform distribution on [0, 1]n

as well as an exponential distribution scaled to the interval [0, 1]. The uniform
data would be expected to result in y values distributed around the middle of
the interval, while exponentially distributed data would often result in outputs
closer to the lower end of the interval. We expect the latter case to result in
worse performance for linearization.

After obtaining the fitted weighted vectors, we calculated the total LSE and
normalized these values by expressing them as a proportion of the optimal LSE
from the weighting vector obtained from the generalized solver. The results are
shown in Table 1.

A number of observations can be made from this data. Firstly, we note that
linearization for ϕ(x) = x2 tended only to produce increases in LSE of about
2–7%, regardless of the data distribution. On the other hand, ϕ(x) = x3 showed
increases in LSE of between 9–24% when there were only m = 20 data instances.

The most dramatic results were obtained when fitting the geometric mean.
For exponentially distributed input vectors, the method of linearization increased
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Table 1. Relative LSE calculated as proportion of total LSE obtained using a general
nonlinear solver (iv). Results represent averages over 10 trials.

Uniformly distributed X

m = 20 σ = 0.05 σ = 0.1
ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0623 0.0011 0.0005 0.0270 0.0159 0.0026
x3 0.0936 0.0114 0.0025 0.1329 0.1038 0.0131

x1/2 0.0233 0.0006 0.0004 0.0725 0.0099 0.0008
log x 0.1492 0.0042 0.0025 0.4763 0.0358 0.0055

m = 100 σ = 0.05 σ = 0.1
ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0072 0.0004 0.0003 0.0106 0.0070 0.0015
x3 0.0266 0.0017 0.0014 0.0356 0.0499 0.0080

x1/2 0.0080 0.0002 0.0001 0.0061 0.0014 0.0005
log x 0.1921 0.0013 0.0011 0.2550 0.0064 0.0017

Exponentially distributed X

m = 20 σ = 0.05 σ = 0.1
ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0479 0.0066 0.0035 0.0795 0.0946 0.0132
x3 0.1560 0.0234 0.0145 0.2345 0.3030 0.0266

x1/2 0.1048 0.0061 0.0036 0.0522 0.0204 0.0047
log x 1.0970 0.0133 0.0076 2.7748 0.0558 0.0194

m = 100 σ = 0.05 σ = 0.1
ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0198 0.0042 0.0041 0.0273 0.0520 0.0055
x3 0.0579 0.0100 0.0040 0.0820 0.1641 0.0117

x1/2 0.0167 0.0015 0.0012 0.0204 0.0098 0.0045
log x 1.8401 0.0095 0.0049 0.7770 0.0460 0.0228

the error by up to 277% when the noise added to y was generated using σ = 0.1.
There was large variability in these trials – in the best case using linearization
increased the error by 45%, while at other times the difference was 10 fold
(LSE was 0.8752 compared with 0.0940 when rest = 0.1 was used, about a 3.2%
increase on the optimal LSE). The worst results seemed to occur where the
data set included y values equal to zero. The weight associated with the lowest
input for that instance is pulled up to try and reduce the very large error. The
compensation factor however did seem to obtain decent improvements even when
the data was exponentially distributed.
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While a setting of rest = 0.1 tended to result in significant improvements for
small errors (σ = 0.05), increased error of σ = 0.1 often had optimal values that
were closer to 0.2.

3 Regularization

In this section we discuss a few possible ways to prevent a model being overfit to a
training sample. In other words, we would like that for other samples of the same
kind (e.g., following the same statistical distribution) the model performance
does not decrease drastically.

3.1 Tikhonov Regularization

The Tikhonov regularization [18] is a basis for the ridge regression [15] method.
It has a form of an additional penalty term dependent on a scaled squared L2

norm of the weighting vector.
In our case we may consider, for some λ, an optimization task:

minimize

m∑
j=1

(
ϕ−1

(
n∑
i=1

wiϕ(x
(j)
i )

)
− y(j)

)2

+ λ

n∑
i=1

w2
i w.r.t. w

subject to 1Tw = 1 and w ≥ 0. Note that due to the usual constraints on w,
the use of the L1 norm instead of squared L2 (like, e.g., in Lasso regression) does
not make much sense at this point: we always have ‖w‖1 = 1.

In the simplest case (ϕ(x) = x), the above optimization problem can be
written in terms of the following quadratic programming task:

minimize 0.5 wT (XXT + λI)w − (XYT )Tw w.r.t. w

subject to w ≥ 0, 1Tw = 1, which minimizes the squared error plus a λ‖w‖22
penalty term. Note that for other generator functions ϕ we can easily incorpo-
rate an appropriate penalty to an optimization task considered in the previous
section.

Remark 1. Unlike in regression problems, where we always presuppose that λ ≥
0, in our framework we are bounded with additional constraints on w which,
for large λ, tend to generate weighting vectors such that wi → 1/n. On the
other hand, in the current framework the case of λ < 0 may also lead to useful
outcomes. Yet, we should note that for λ → −∞ we observe that wj → 1 for
some j.

Example 2. Let us consider a data set generated randomly with R as follows:

set.seed (321)

n <- 10; m <- 100

realw <- rbeta(n, 1, 5)
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realw <- realw/sum(realw) # real weights ~ beta distribution

X <- t(matrix(runif(n*m), nrow=m))

Y <- t(realw) %*% X + rnorm(m, 0, 0.1)

Y[,] <- pmax(0, pmin(1, Y))

X <- round(X, 2) # uniform distribution , rounded

Y <- round(Y, 2) # sigma =0.1, truncated to [0,1], rounded

train <- sample (1:m, m*0.8)

X_test <- X[,-train ,drop=FALSE] # test sample

Y_test <- Y[,-train ,drop=FALSE]

X <- X[,train ,drop=FALSE] # training sample

Y <- Y[,train ,drop=FALSE]

The data points are divided into two groups: a training sample (80% of the obser-
vations, used to estimate the weights) and a test sample (20%, used to compute
the error). Figure 2 depicts squared error measures as a function of Tikhonov
regularization coefficient λ. We see we were able to improve the error measure
by ca. 9% by using λ ' 4.83.

E d1 d2 d∞

— (using realw) 1.291 0.3637 0.1915
LAD 1.488 0.4027 0.1937
LSE 1.436 0.4036 0.1931
LMD 1.475 0.4025 0.1699
LSE + regularization, λ ' 4.83 1.371 0.3705 0.1891
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Fig. 2. Three error measures on a test data set from Example 2 as a function of
regularization penalty λ.
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3.2 Weights Dispersion Entropy

Similar to minimizing sum of squared weights, maximizing weights dispersion
entropy can also have benefits, measuring the degree to which the function takes
into account all the inputs, compare [9] for its use for a different purpose. It is
given by:

Disp(w) = −
n∑
i=1

wi logwi,

with the convention 0 · log 0 = 0.
In cases where fitting results in multiple solutions, for example when there

is too few data for there to be a singular minimizer, Torra proposed the use
of weights dispersion as an additional criterion to determine the best solution
[19]. It is implemented as a second level of the optimization. After obtaining a
minimum A to the objective in the standard least squares fitting problem, one
then solves:

minimize
n∑
i=1

wi logwi + λ

(
m∑
j=1

(
ϕ−1

(
n∑
i=1

wiϕ(x
(j)
i )

)
− y(j)

)2

−A

)2

w.r.t. w

such that
n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,

for some λ > 0.
One may alternatively consider a one-level task like:

minimize

m∑
j=1

(
ϕ−1

(
n∑
i=1

wiϕ(x
(j)
i )

)
− y(j)

)2

+ λ

n∑
i=1

wi logwi w.r.t. w

subject to the standard constraints.

Remark 2. In fact, weights dispersion and sum of squared weights are both ex-
amples of functions used to model income inequality in economics and evenness
in ecology. There are numerous other functions used in these fields that could
also be used as secondary objectives to achieve the task of weight regularization
(e.g., the Gini index).

4 Conclusion

We have considered some practical issues concerning fitting weighted quasi arith-
metic means to empirical data using supervised learning-like approaches. First
of all, we pointed out the drawbacks of the commonly applied linearization tech-
nique, which may lead to far-from-optimal solutions. Moreover, we analyzed
some ways to prevent model overfitting.

Note that the discussion can be easily generalized to other error measures
and fitting other aggregation functions parametrized via a weighting vector, e.g.,
weighted Bonferroni means and generalized OWA operators. In future applica-
tions, the compensation and regularization techniques proposed here can be used
to learn more useful and informative models.
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