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Abstra
t. In this paper the re
ently introdu
ed 
lass of e�ort-dominating

impa
t fun
tions is examined. It turns out that ea
h e�ort-dominating

aggregation operator not only has a very intuitive interpretation, but

also is symmetri
 minitive, and therefore may be expressed as a so-
alled

quasi-I-statisti
, whi
h generalizes the well-known OWMin operator.

These aggregation operators may be used e.g. in the Produ
er Assess-

ment Problem whi
h the most important instan
e is the s
ientometri
/biblio-

metri
 issue of fair s
ientists' ranking by means of the number of 
itations

re
eived by their papers.
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1 Preliminaries

Information aggregation is a pro
ess that plays a very important role in many

human a
tivities, e.g. in statisti
s, engineering, and s
ientometri
s. For example,

in the Produ
ers Assessment Problem [5,7℄ we are interested in the 
onstru
tion

of a 
lass of mappings that proje
t the spa
e of arbitrary-sized real ve
tors of

individual goods' quality measures into a single number that re�e
ts both (a)

general quality of goods, and (b) the produ
er's overall produ
tivity.

Nonde
reasing, symmetri
, and arity-monotoni
 aggregation operators useful

in the PAP are 
alled impa
t fun
tions. For example, in [6℄ the most fundamen-

tal properties of L-, S-, quasi-L-, and quasi-S-statisti
s, whi
h generalize OWA
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[13℄, OWMax [2℄, OMA [10℄, and symmetri
 maxitive aggregation operators,

respe
tively, were analyzed.

In [7℄ the 
lass of e�ort-dominating operators was introdu
ed. It was used to


onstru
t possibility distributions of impa
t fun
tions' output values under �

but not limited to � right-
ensored input data. As this very appealing 
lass of

aggregation operators has not been thoroughly examined yet, in this paper we

are interested in �nding how they are related to other fun
tions known from the

aggregation theory [
f. 8℄.

1.1 Notational Convention

From now on let I = [a, b] denote any 
losed interval of the extended real line, R̄ =
[−∞,∞]. The set of all arbitrary-length ve
tors with elements in I, i.e.

⋃∞
n=1 I

n
,

is denoted by I
1,2,...

. If not stated otherwise expli
itly, we assume that n, m ∈
N = {1, 2, . . .}. Moreover, let [n] = {1, 2, . . . , n}.

For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ I
n
, we write x ≤ y if and only if

(∀i ∈ [n]) xi ≤ yi. Let x(i) denote the ith order statisti
 of x = (x1, . . . , xn). For
x,y ∈ I

n
, we write x ∼= y if and only if there exists a permutation σ of the set

[n] su
h that x = (yσ(1), . . . , yσ(n)). A ve
tor (x, x, . . . , x) ∈ I
n
is denoted brie�y

by (n ∗ x). For ea
h x ∈ I
n
and y ∈ I

m
, (x,y) denotes the 
on
atenation of the

ve
tors, i.e. (x1, . . . , xn, y1, . . . , ym) ∈ I
n+m

.

If f, g : I → R̄ then f � g (g dominates f) if and only if (∀x ∈ I) f(x) ≤ g(x).
The image of f is denoted by img f.

1.2 Aggregation Operators

Let E(I) denote the set of all aggregation operators in I
1,2,...

, i.e. E(I) = {F :
I
1,2,... → I}. The 
lass of aggregation operators re�e
ts the very general idea of


ombining multiple numeri
 values into a single one, in some way representative

of the whole input. Note that the aggregation (averaging) fun
tions [
f. 8,11℄

form a parti
ular sub
lass of aggregation operators.

In this paper we fo
us our attention on nonde
reasing, arity-monotoni
, and

symmetri
 aggregation operators. Su
h operators are 
alled impa
t fun
tions

3

.

De�nition 1. We say that F ∈ E(I) is nonde
reasing, denoted F ∈ P(nd), if

(∀n) (∀x,y ∈ I
n) x ≤ y =⇒ F(x) ≤ F(y).

De�nition 2. We 
all F ∈ E(I) arity-monotoni
, denoted F ∈ P(am), if

(∀n, m) (∀x ∈ I
n) (∀y ∈ I

m) F(x) ≤ F(x,y).

3

Originally, in [5,7℄ we have required impa
t fun
tions to ful�ll some additional bound-

ary 
onditions, whi
h are not needed in this 
ontext.
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De�nition 3. We say that F ∈ E(I) is symmetri
, denoted F ∈ P(sym), if

(∀n) (∀x,y ∈ I
n) x ∼= y =⇒ F(x) = F(y).

Moreover, let us 
onsider the following pre-order

4

on I
1,2,...

. For any x ∈ I
n

and y ∈ I
m

we write x E y if and only if n ≤ m and x(n−i+1) ≤ y(m−i+1) for all

i ∈ [n]. Re
all that x(n−i+1) denotes the ith largest element of x.

We have re
ently shown (see [7℄ for the proof) that an aggregation operator

F satis�es the three above properties if and only if F is a morphism (order-

preserving mapping) between the pre-ordered set

(

I
1,2,..., E

)

and (R̄,≤).

Theorem 1. Let F ∈ E(I). Then F ∈ P(nd) ∩ P(am) ∩ P(sym) if and only if

(∀x,y ∈ I
1,2,...) x E y =⇒ F(x) ≤ F(y). (1)

2 E�ort-Dominating Impa
t Fun
tions

Given an aggregation operator F ∈ E(I) and a 
onstant v ∈ img F, let F−1[v] :=
{

x ∈ I
1,2,... : F(x) = v

}

denote the v-level set of F. Additionally, if F ∈ P(sym)

then, to avoid ambiguity, we assume that F−1[v] 
onsists only of ve
tors in I
1,2,...

that are unique w.r.t. the relation

∼= (e.g. their terms are sorted nonin
reasingly).

Let us re
all the notion of an e�ort-measurable aggregation operator [7℄.

De�nition 4. We say that F ∈ P(nd) ∩ P(am) ∩ P(sym) is e�ort-measurable,

denoted F ∈ P(em), if
(

F−1[v], E
)

is a partially ordered set with a unique least

element for any v ∈ img F.

In other words, F ∈ P(em) if and only if for any v ∈ img F,
(

F−1[v], E
)

is a lower

semilatti
e (a meet- or ∧-semilatti
e).

Example 1. Not every F ∈ P(nd) ∩ P(am) ∩ P(sym) is e�ort-measurable. E.g. for

a quasi-L-statisti
 [
f. 6℄ L△ su
h that L△(x1, . . . , xn) =
∑n

i=1(n−i+1)x(n−i+1),

we have L−1
△ [3] = {(3), (1, 1), (1.5, 0), (1, 0, 0), . . .} , whi
h has no least element

w.r.t. E. Moreover, the lp-indi
es proposed in [4; 
f. also 3℄ also are not e�ort-

measurable. �

For any given F ∈ P(em) and v ∈ img F, let µv
denote the least element of

F−1[v], i.e. µv := min{F−1[v]}. Clearly, for w = min{img F} we have µw = (a).
Additionally, from now on M(F) := {µv : v ∈ img F}.

Example 2. Consider the aggregation operator Max ∈ P(em), de�ned as Max(x1,

. . . , xn) = x(n) for (x1, . . . , xn) ∈ I
1,2,...

. We have img Max = I, Max−1[v] =
{(x1, . . . , xn) ∈ I

1,2,... : x(n) = v}, µv = (v) ∈ I
1
, and M(Max) = I

1
. �

4

Formally, it is easily seen that E is not anti-symmetri
 (and hen
e is not a partial

order, 
ontrary to our statement in [7℄) unless it is de�ned on the set of equivalen
e


lasses of

∼=. Thanks to Prof. Mi
haª Ba
zy«ski for pointing out this error.
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From the 
lass of e�ort-measurable aggregation operators let us distinguish

the set of e�ort-dominating operators.

De�nition 5. We say that F ∈ P(em) is e�ort-dominating, denoted F ∈ P(ed),

if (M(F), E) is a 
hain.

We see that in 
ase of e�ort-dominating aggregation operators we have µv ⊳

µv′ ⇐⇒ v < v′ for all v, v′ ∈ img F. It is very important to note that ea
h

F ∈ P(ed) may be de�ned in the following, highly intuitive manner. For any

x ∈ I
1,2,...

it holds

F(x) = arg max
v∈img F

{µv ∈ M(F) : µv
E x} . (2)

We therefore look for the greatest v su
h that µv
is still dominated by the input

ve
tor (
f. Fig. 1).

5.3

51

i

x(n−i+1)

×
××

×

×

µ
v1

µ
v2

µ
v3

µ
v4

Fig. 1. x(n−i+1) as a fun
tion of i for x = (5.3, 3.2, 1.8, 1.5, 0.5) and the pro
ess of

determining F(x).

Example 3. Let I = [0,∞]. The widely-known Hirs
h's h index [9℄, introdu
ed

in 2005 in the �eld of bibliometri
s, is an impa
t fun
tion H su
h that for

(x1, . . . , xn) ∈ I
1,2,...

we have H(x1, . . . , xn) = max{i = 0, 1, . . . , n : x(n−i+1) ≥
i} under the 
onvention x(n+1) = x(n). We have µ0 = (0), and µn = (n ∗ n) for
n ∈ N, therefore H ∈ P(ed). �

Example 4. Let I = [0,∞]. The rp-index [3,4℄ for p ≥ 1 is an impa
t fun
tion

rp(x1, . . . , xn) := sup{r ≥ 0 : sp,r
E x},

where (x1, . . . , xn) ∈ [0,∞]1,2,...
and s

p,r ∈ I
⌈r⌉

, r > 0, denotes a sequen
e

s
p,r =

{(

p
√

rp − 0p, p
√

rp − 1p, . . . , p
√

rp − ⌈r − 1⌉p

)

if p < ∞,

(r, r, . . . , r) if p = ∞,
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r

1

⌈r⌉1

i

s
p,r
i

p = ∞

p = 2

p = 1

Fig. 2. s
p,r

i as a fun
tion of i for p = 1, 2,∞.

under the assumption s
p,0 = (0), see Fig. 2.

It may be shown that for any x ∈ [0,∞]1,2,...
, r∞(⌊x⌋) = H(x), and r1(⌊x⌋) =

W(x), where W is the Woeginger's w-index [12℄.

Clearly, ea
h rp-index is e�ort-dominating [7℄ � we have µv = s
v,r

. The r∞-

index may be expressed as a symmetri
 maxitive or a symmetri
 modular ag-

gregation operator [6℄. However, for x(2) ≥ x(1) ≥ 0, e.g. we have r1(x(2), x(1)) =
(x(2) ∧ 2)∧ (1 + (x(1) ∧ 1)), for whi
h there do not exist nonde
reasing fun
tions

f1,2, f2,2 : I → R̄, su
h that r1(x(2), x(1)) = f1,2(x(2))∨f2,2(x(1)), or r1(x(2), x(1)) =
f1,2(x(2)) + f2,2(x(1)).

�

3 Symmetri
 Minitive Aggregation Operators

Let us �rst re
all the notion of a triangle of fun
tions [
f. 6℄:

De�nition 6. A triangle of fun
tions is a sequen
e

△ = (fi,n)i∈[n],n∈N,

where (∀n) (∀i ∈ [n]) fi,n : I → I.

Su
h obje
ts may be used to generate interesting 
lasses of aggregation oper-

ators, e.g. quasi-S- (
onsising of � but not limited to � all symmetri
 maxitive

operators), and quasi-L-statisti
s (symmetri
 modular operators [
f. 10℄). Here

we introdu
e another one.

De�nition 7. A quasi-I-statisti
 generated by △ = (fi,n)i∈[n],n∈N is a fun
-

tion qI△ ∈ E(I) de�ned for any (x1, . . . , xn) ∈ I
1,2,...

as

qI△(x) =
n
∧

i=1

fi,n(x(n−i+1)). (3)
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Please note that ∧ denotes the minimum (In�mum) operator, hen
e the

name. We obviously have qI△ ∈ P(sym) for any triangle of fun
tions △.

It is easily seen that quasi-I-statisti
s generalize OWMin operators [1℄, for

whi
h we have fi,n(x) = ci,n ∨ x for some ci,n ∈ I, and symmetri
 minitive

aggregation operators, i.e. the set of all F ∈ E(I) su
h that (∀n) (∀x,y ∈ I
n) it

holds F(x
S
∧ y) = F(x) ∧ F(y), where x

S
∧ y = (x(n) ∧ y(n), . . . , x(1) ∧ y(1)).

The following theorem states that, without loss of generality, triangles of

fun
tions generating nonde
reasing quasi-I-statisti
s may be assumed to be of

a parti
ular form.

Theorem 2. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N. Then qI△ ∈ P(nd) if and

only if there exists ▽ = (gi,n)i∈[n],n∈N satisfying the following 
onditions:

(i) (∀n) (∀i ∈ [n]) gi,n is nonde
reasing,

(ii) (∀n) (∀i ∈ [n]) gi,n(b) = g1,n(b),
(iii) (∀n) g1,n � · · · � gn,n,

su
h that qI△ = qI
▽
.

Proof. (=⇒) Let us �x n. Let en = qS△(n ∗ b) =
∧n

i=1 fi,n(b). Therefore, as
qI△ ∈ P(nd), for all x ∈ I

n
it holds qI△(x) ≤ en. As a 
onsequen
e,

qI△(x) =

n
∧

i=1

fi,n(x(n−i+1)) =

n
∧

i=1

(

fi,n(x(n−i+1)) ∧ en

)

.

Please note that, as qI△ is nonde
reasing, we have (∀x ∈ I
n) (∀i ∈ [n])

qI△(x) ≤ qI△((n − i) ∗ b, i ∗ x(i)), be
ause (x(n), . . . , x(1)) ≤ ((n − i) ∗ b, i ∗ x(i)).
We therefore have qI△(x) ≥ fj,n(x(n−i+1)), where 1 ≤ i ≤ j ≤ n. However, by

de�nition, for ea
h x there exists k ∈ [n] for whi
h qI△(x) = fk,n(x(n−k+1)).
Thus,

qI△(x) = qI△((n − 1) ∗ b, 1 ∗ x(1))

∧ qI△((n − 2) ∗ b, 2 ∗ x(2))

.

.

.

∧ qI△((n − n) ∗ b, n ∗ x(n)).

Consequently,

qI△(x) =

n
∧

i=1





n
∧

j=i

fj,n(x(n−i+1)) ∧ en



 .

We may thus set gi,n(x) :=
∧n

j=i fj,n(x) ∧ en for all i ∈ [n]. We see that g1,n �
· · · � gn,n, and g1,n(b) = · · · = gn,n(b) = en.

We will show that ea
h gi,n is nonde
reasing. Assume otherwise. Let there

exist i and a ≤ x < y ≤ b su
h that gi,n(x) > gi,n(y). We have qS
▽
((n− i)∗ b, i∗

x) = gi,n(x) > qS
▽
((n − i) ∗ b, i ∗ y) = gi,n(y), a 
ontradi
tion.

(⇐=) Trivial. �
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Please note that, 
learly, whenever ▽ ful�lls all the above 
onditions then it

holds img qI
▽

=
⋃∞

n=1

(
⋃n

i=1 img gi,n

)

.

Now let us �nd out when a nonde
reasing quasi-I-statisti
 is arity-monotoni
.

Theorem 3. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N be su
h that (∀n) (∀i ∈ [n])
fi,n is nonde
reasing, fi,n(b) = f1,n(b), and f1,n � · · · � fn,n. Then qI△ ∈ P(am)

if and only if (∀n) (∀i ∈ [n]) fi,n � fi,n+1, and fn+1,n+1(a) ≥ f1,n(b).

Proof. (=⇒) We have (∀x ∈ I) qI△(x) = f1,1(x). Moreover, qI△(x, a) = f1,2(x) ∧
f2,2(a). Therefore, qI△(x) ≤ qI△(x, a) if f2,2(a) ≥ f1,1(b) (when x = b) and

f1,2 � f1,1.

Fix n. qI△(n ∗ b) ≤ qI△(n ∗ b, a) implies that fn+1,n+1(a) ≥ f1,n(b) = · · · =
fn,n(b). Now take arbitrary x ∈ I

n
. qI△(x(n), (n − 1) ∗ a) ≤ qI△(x(n), (n) ∗ a),

implies that f1,n � f1,n+1 (note that, a

ording to the assumption, f1,n+1(a) ≤
· · · ≤ fn+1,n+1(a)). For qI△(x(n), x(n−1), (n−2)∗a) ≤ qI△(x(n), x(n−1), (n−1)∗a)
to hold for any b ≥ x(n) ≥ x(n−1) ≥ a, we must have additionally f2,n � f2,n+1.

By 
onsidering the remaining n− 2 terms of x we approa
h the 
ondition (∀i ∈
[n]) fi,n � fi,n+1.

(⇐=) Trivial. �

4 The Relationship Between the Two Classes

We are obviously interested in the relationship between the nonde
reasing, arity-

monotoni
 quasi-I-statisti
s and e�ort-dominating aggregation operators. It turns

out that all e�ort-dominating aggregation operators belong to the 
lass of quasi-

I-statisti
s.

Theorem 4. Let F ∈ P(ed) and I = [a, b]. Then there exists △ = (fi,n)i∈[n],n∈N

su
h that qI△ = F.

Proof. Take any F ∈ P(ed). For any n and i ∈ [n], let li,n := min{µv
(n−i+1) :

|µv| = n}, and ui,n := max{µv
(n−i+1) : |µv| = n}. As M(F) is a 
hain w.r.t. E

and F ∈ P(nd) ∩ P(am) ∩ P(sym), we have li,n ≤ ui,n ≤ li,n+1.

Let us �rst 
onsider restri
tion of F to I
1
. For any x(1) ∈ I we have:

F(x(1)) = max{v : µv
(1) ≤ x(1), |µv| = 1}

:= f1,1(x(1)).

Note that f1,1 is nonde
reasing.

Furthermore, for b ≥ x(2) ≥ x(1) ≥ a it holds:

F(x(2), x(1)) =







(

max{v : µv
(2) ≤ x(2), |µv| = 2} for x(2) ≥ l1,2

∧ max{v : µv
(1) ≤ x(1), |µv| = 2}

)

and x(1) ≥ l2,2,

f1,1(x(2)) otherwise,
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whi
h may be written as:

F(x(2), x(1)) = f1,2(x(2)) ∧ f2,2(x(1)),

where:

f1,2(x(2)) =

{

f1,1(x(2)) for x(2) < l1,2,

max{v : µv
(2) ≤ x(2), |µv| = 2} otherwise,

f2,2(x(1)) =

{

f1,1(u1,1) for x(1) < l2,2,

max{v : µv
(1) ≤ x(1), |µv| = 2} otherwise.

Note that both f1,2 and f2,2 are nonde
reasing, f1,1 � f1,2 � f2,2, f1,2(b) = f2,2(b),
and f2,2(a) ≥ f1,1(b) = f1,1(u1,1).

Now for n = 3, let b ≥ x(3) ≥ x(2) ≥ x(1) ≥ a. It holds:

F(x(3), x(2), x(1)) =















(

max{v : µv
(3) ≤ x(3), |µv| = 3} for x(3) ≥ l1,3

∧ max{v : µv
(2) ≤ x(2), |µv| = 3}

)

and x(2) ≥ l2,3,

∧ max{v : µv
(1) ≤ x(1), |µv| = 3}

)

and x(1) ≥ l3,3,

f1,2(x(3)) ∧ f2,2(x(2)) otherwise,

whi
h is equivalent to:

F(x(3), x(2), x(1)) = f1,3(x(3)) ∧ f2,3(x(2)) ∧ f3,3(x(1)),

where

f1,3(x(3)) =

{

f1,2(x(3)) for x(3) < l1,3,

max{v : µv
(3) ≤ x(3), |µv| = 3} otherwise,

f2,3(x(2)) =

{

f2,2(x(2)) for x(2) < l2,3,

max{v : µv
(2) ≤ x(2), |µv| = 3} otherwise,

f3,3(x(1)) =

{

f1,2(u1,2) for x(1) < l3,3,

max{v : µv
(1) ≤ x(1), |µv| = 3} otherwise.

By applying similar reasoning for any n > 3, we approa
h the equation

F(x(n), . . . , x(1)) =
n
∧

i=1

fi,n(x(n−i+1)),

where for i < n we have

fi,n(x(n−i+1)) =

{

fi,n−1(x(n−i+1)) for x(n−i+1) < li,n,

max{v : µv
(n−i+1) ≤ x(n−i+1), |µv| = n} otherwise,

and

fn,n(x(1)) =

{

f1,n−1(u1,n−1) for x(1) < ln,n,

max{v : µv
(1) ≤ x(1), |µv| = n} otherwise.
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This formula generates ea
h fi,n being nonde
reasing, f1,n � · · · � fn,n, fi,n−1 �
fi,n, fi,n(b) = f1,n(b), and fn,n(a) ≥ f1,n−1(b), thus F is a nonde
reasing, arity-

monotoni
 quasi-I-statisti
, whi
h 
ompletes the proof. �

Example 5. By the 
onstru
tion above, we have:

rp(x1, . . . , xn) =

{∧n

i=1

(

(n ∧ x(n−i+1)) ∨ (i − 1)
)

if p = ∞,
∧n

i=1

((

n ∧ p

√

x
p

(n−i+1) + (i − 1)p

)

∨ (i − 1)
)

if p ∈ [1,∞).

�

Interestingly, if we are given an already nonde
reasingly-sorted input ve
tor

x ∈ I
n
and an e�ort-dominating impa
t fun
tion F for whi
h the value max{v :

µv
(n−i+1) ≤ x(n−i+1), |µv| = n} may be 
omputed in O(1)-time for all i, n (just

as in Example 5) then F(x) may be 
omputed in O(n)-time.

On the other hand, not ea
h qI△ ∈ P(nd) ∩ P(am) belongs to P(ed).

Example 6. Let I = [0, 2] and △ = (fi,n)i∈[n],n∈N be su
h that f1,1 = ⌊x⌋,
f1,2(x) = x, f2,2(x) = 2, and (∀n ≥ 3) (∀i ∈ [n]) fi,n(x) = 2. We see that

qI△ ∈ P(em)∩P(nd) ∩P(am). However, e.g. µ0 = (0) E µ0.5 = (0.5, 0) 6E µ1 = (1).
Therefore, M(qI△) is not a 
hain w.r.t. E, and hen
e qI△ 6∈ P(ed). �

For the sake of 
ompleteness, we shall show whi
h triangles of fun
tions generate

e�ort-dominating quasi-I-statisti
s.

Theorem 5. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N be su
h that (∀n) (∀i ∈ [n])
fi,n is nonde
reasing, fi,n(b) = f1,n(b), f1,n � · · · � fn,n, and qI△ ∈ P(am). Then

qI△ ∈ P(ed) if and only if

(∀n) (∀i ∈ [n]) (∀x < ui,n) fi,n+1(x) = fi,n(x),

where ui,n = min{y : fi,n(y) = fi,n(b)}.
Proof. (=⇒) Assume the opposite. Take the smallest n and the smallest i ∈ [n]
for whi
h there exists x < ui,n su
h that fi,n(x) < fi,n+1(x). We have 2 
ases.

(i) Let (∃y) su
h that fi,n(y) = fi,n+1(x). As ea
h fun
tion is nonde
reasing,

y > x holds. But in this 
ase the least element (w.r.t. E) of {x : qI△(x) =
fi,n+1(x)} does not exist and hen
e qI△ is not even e�ort-measurable.

(ii) Otherwise, we have µfi,n(x) 6E µfi,n+1(x)
(note that fi,n(x), fi,n+1(x) ∈

img qI△), and therefore M(qI△) is not a 
hain, a 
ontradi
tion.

(⇐=) By arity-monotoni
ity, we have (∀n) (∀i ∈ [n]) fi,n � fi,n+1, and

fn+1,n+1(a) ≥ f1,n(b). Take any v, v′ ∈ img qI△ su
h that v < v′. Let us take

the smallest m su
h that (∃x) f1,m(x) = v and the smallest m′
su
h that

(∃y) f1,m(y) = v′. Note that, by the assumptions taken, (∀n < m) (∀x ∈ I
n)

qI△(x) < v, and the same holds for m′
and v′. Additionally, we have m ≤ m′

.

It holds µv
(m−i+1) = min{x : fi,m(x) ≥ v} for i ∈ [m], and µv′

(m′−j+1) =

min{x : fj,m′(x) ≥ v′} for j ∈ [m′]. But (∀i ∈ [m]) µv
(m−i+1) ≤ µv′

(m′−i+1),

be
ause fi,m(µv
(m−i+1)) = fi,m′(µv

(m−i+1)) and ea
h fun
tion is nonde
reasing.

Therefore, µv E µv′

, QED. �
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5 Con
lusions

In this paper we have shown that all e�ort-dominating aggregation operators,

among whi
h we may �nd Gagolewski-Grzegorzewski's rp-indi
es [3,4℄, Hirs
h's

h-index = r∞(⌊x⌋) [9℄, and Woeginger's w-index = r1(⌊x⌋) [12℄, are symmetri
-

minitive.

E�ort-dominating aggregation operators, proposed in [7℄, have a very in-

tuitive interpretation: their value may be determined by 
omparing an input

ve
tor with elements of a set of �minimal quality requirements� needed to rea
h

a parti
ular �quality level�.

Su
h aggregation operators may be used e.g. in the Produ
er Assessment

Problem [see 5,7℄, whose most important instan
e is the issue of fair ranking of

s
ientists by means of the number of 
itations re
eived by their papers.
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