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Abstract. In this paper the recently introduced class of effort-dominating
impact functions is examined. It turns out that each effort-dominating
aggregation operator not only has a very intuitive interpretation, but
also is symmetric minitive, and therefore may be expressed as a so-called
quasi-I-statistic, which generalizes the well-known OWDMin operator.

These aggregation operators may be used e.g. in the Producer Assess-
ment Problem which the most important instance is the scientometric/biblio-
metric issue of fair scientists’ ranking by means of the number of citations
received by their papers.
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1 Preliminaries

Information aggregation is a process that plays a very important role in many
human activities, e.g. in statistics, engineering, and scientometrics. For example,
in the Producers Assessment Problem [5,7] we are interested in the construction
of a class of mappings that project the space of arbitrary-sized real vectors of
individual goods’ quality measures into a single number that reflects both (a)
general quality of goods, and (b) the producer’s overall productivity.
Nondecreasing, symmetric, and arity-monotonic aggregation operators useful
in the PAP are called impact functions. For example, in [6] the most fundamen-
tal properties of L-, S-; quasi-L-, and quasi-S-statistics, which generalize OWA
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[13], OWMax [2], OMA [10], and symmetric maxitive aggregation operators,
respectively, were analyzed.

In [7] the class of effort-dominating operators was introduced. It was used to
construct possibility distributions of impact functions’ output values under —
but not limited to — right-censored input data. As this very appealing class of
aggregation operators has not been thoroughly examined yet, in this paper we
are interested in finding how they are related to other functions known from the
aggregation theory [cf. §8].

1.1 Notational Convention

From now on let I = [a, b] denote any closed interval of the extended real line, R =
[—00, 00]. The set of all arbitrary-length vectors with elements in I, i.e. |J)—, I",
is denoted by I''2. If not stated otherwise explicitly, we assume that n,m €
N ={1,2,...}. Moreover, let [n] = {1,2,...,n}.

For any x = (x1,...,2,), ¥ = (Y1, -, yn) € [, we write x <y if and only if
(Vi € [n]) z; < y;. Let 2(;) denote the ith order statistic of x = (z1,...,x,). For
x,y € 1", we write x 2 y if and only if there exists a permutation o of the set
[n] such that X = (Yo(1),- - -, Yo(n))- A vector (z,z,...,z) € I" is denoted briefly
by (n*x). For each x € " and y € I"™, (x,y) denotes the concatenation of the
vectors, i.e. (T1,...,Tn, Y1,---,Ym) € [PTT.

If f,g: T — R then f < g (g dominates f) if and only if (Vx € I) f(z) < g(z).
The image of f is denoted by imgf.

1.2 Aggregation Operators

Let £(I) denote the set of all aggregation operators in IM% ie. £(I) = {F:
%2+ — T}. The class of aggregation operators reflects the very general idea of
combining multiple numeric values into a single one, in some way representative
of the whole input. Note that the aggregation (averaging) functions [cf. 8,11]
form a particular subclass of aggregation operators.

In this paper we focus our attention on nondecreasing, arity-monotonic, and

symmetric aggregation operators. Such operators are called impact functions?.

Definition 1. We say that F € £(I) is nondecreasing, denoted F € P, q), if
(Vn) (vx,y € I") x <y = F(x) < F(y).
Definition 2. We call F € £(I) arity-monotonic, denoted F € P(ay,, if
(Vn,m) (Vx €I") (Vy € I") F(x) < F(x,y).

% Originally, in [5,7] we have required impact functions to fulfill some additional bound-
ary conditions, which are not needed in this context.



On the Relation Between Effort-Dominating. . . 3

Definition 3. We say that F € £(I) is symmetric, denoted F € Py, if

(Vn) (vx,y € I") x 2y = F(x) = F(y).

Moreover, let us consider the following pre-order* on I'*>. For any x € I"
and y € I'™ we write x Jy if and only if n < m and z(,—i41) < Y(m—i+1) for all
i € [n]. Recall that 2(,_;,1) denotes the ith largest element of x.

We have recently shown (see [7] for the proof) that an aggregation operator
F satisfies the three above properties if and only if F is a morphism (order-
preserving mapping) between the pre-ordered set (]Il’z"", ﬂ) and (R, <).

Theorem 1. Let F € E(). Then F € Pay N Pram) N Psym) if and only if

(vx,y e ") x dy = F(x) < F(y). (1)

2 Effort-Dominating Impact Functions

Given an aggregation operator F € £(I) and a constant v € imgF, let F~1[v] :=
{x € I"* : F(x) = v} denote the v-level set of F. Additionally, if F € P(gym)
then, to avoid ambiguity, we assume that F~![v] consists only of vectors in T':2:
that are unique w.r.t. the relation 2 (e.g. their terms are sorted nonincreasingly).
Let us recall the notion of an effort-measurable aggregation operator [7].

Definition 4. We say that F € P4y N Pram) N Psym) is effort-measurable,
denoted F € Pew), if (F_l[v], ﬁ) is a partially ordered set with a unique least
element for any v € imgF.

In other words, F € P(ep) if and only if for any v € imgF, (F~![v], <) is a lower
semilattice (a meet- or A-semilattice).

Ezample 1. Not every F € Pua)y N Pam) N Psym) 1 effort-measurable. E.g. for
a quasi-L-statistic [cf. 6] La such that La (@1,...,2n) = > 1y (n—i+1) £(n_iy1),
we have L'[3] = {(3),(1,1),(1.5,0),(1,0,0),...}, which has no least element
w.r.t. <. Moreover, the [,-indices proposed in [4; cf. also 3] also are not effort-
measurable. O

For any given F € P,y and v € imgF, let p” denote the least element of
F~1v], i.e. p¥ := min{F~![v]}. Clearly, for w = min{imgF} we have pu* = (a).
Additionally, from now on M (F) := {u" : v € imgF}.

Ezample 2. Consider the aggregation operator Max € P(ey,), defined as Max(z1,
ce ) = Ty for (z1,...,1,) € I%2 We have imgMax = I, Max™'[v] =
{(z1,....2n) €IV 12y = v}, p¥ = (v) € I', and M(Max) =T". O

* Formally, it is easily seen that < is not anti-symmetric (and hence is not a partial
order, contrary to our statement in [7]) unless it is defined on the set of equivalence
classes of 2. Thanks to Prof. Michal Baczynski for pointing out this error.
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From the class of effort-measurable aggregation operators let us distinguish
the set of effort-dominating operators.

Definition 5. We say that F € P(er) is effort-dominating, denoted F € Peq),
if (M(F),<) is a chain.

We see that in case of effort-dominating aggregation operators we have p, <
fy < v < v for all v,v’ € imgF. It is very important to note that each
F € Py may be defined in the following, highly intuitive manner. For any
x € IH2+ it holds

F(x) = argmax {p" € M(F) : p¥ <x}. (2)
veimgF

We therefore look for the greatest v such that p* is still dominated by the input
vector (cf. Fig. 1).
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Fig.1. z(,_;+1) as a function of ¢ for x = (5.3,3.2,1.8,1.5,0.5) and the process of
determining F(x).

Ezample 3. Let I = [0, 00]. The widely-known Hirsch’s h index [9], introduced
in 2005 in the field of bibliometrics, is an impact function H such that for

(w1,...,2,) € % we have H(x1,...,2,) = max{i = 0,1,...,n : T(p—it1) =
i} under the convention x(,11) = 2(,). We have u = (0), and p" = (n*n) for
n € N, therefore H € P(eq). O

Ezample 4. Let I = [0, 00]. The rp-index [3,4] for p > 1 is an impact function
tp(z1,...,2,) :=sup{r > 0:s?" < x},

where (z1,...,2,) € [0,00]"% and s»" € II"1 7 > 0, denotes a sequence

Sp’T:{(VTP—OP,{VTP—IP,...,VTP—|—’I“—1-|p) if p < o0,

(ryry..ooym) if p = oo,
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Fig. 2. s?" as a function of i for p = 1,2, c0.

under the assumption sV = (0), see Fig. 2.

It may be shown that for any x € [0, 00]V2, roo (|x]) = H(x), and 1 (|x]) =
W(x), where W is the Woeginger’s w-index [12].

Clearly, each rp-index is effort-dominating [7] — we have p¥ = s¥". The ro-
index may be expressed as a symmetric maxitive or a symmetric modular ag-
gregation operator [6]. However, for z(5) > x(1) > 0, e.g. we have ry (2 2y, z(1)) =
(z(2) A2) A(1+ (1) A 1)), for which there do not exist nondecreasing functions
fi1,2,f22 : I — R, such that ri(z(2), 2(1)) = f12(x(2)) V2,2(z)), or ri(z(2), z1)) =
fi2(z(2)) + f2,2(z(1))-

(]

3 Symmetric Minitive Aggregation Operators

Let us first recall the notion of a triangle of functions [cf. 6]:

Definition 6. A triangle of functions is a sequence

A= (fim)ie[n],nENv
where (Yn) (Vi € [n]) fip:I— L

Such objects may be used to generate interesting classes of aggregation oper-
ators, e.g. quasi-S- (consising of — but not limited to — all symmetric maxitive
operators), and quasi-L-statistics (symmetric modular operators [cf. 10]). Here
we introduce another one.

Definition 7. A quasi-I-statistic generated by A = (f; ,)icn)nen s a func-
tion ql, € E() defined for any (x1,...,3,) € [H% as

n

ala(x) = /\ fin(@(n—it1))- (3)

i=1
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Please note that A denotes the minimum (Infimum) operator, hence the
name. We obviously have gl € P(sym) for any triangle of functions A.

It is easily seen that quasi-I-statistics generalize OWMin operators [1], for
which we have f; ,(z) = ¢, V 2 for some ¢, € I, and symmetric minitive
aggregation operators, i.e. the set of all F € £(I) such that (Vn) (Vx,y € I") it

5 s
holds F(x A'y) = F(x) AF(y), where x Ay = (x(n) ANYmys -+ T(1) A y(l)).
The following theorem states that, without loss of generality, triangles of

functions generating nondecreasing quasi-I-statistics may be assumed to be of
a particular form.

Theorem 2. Let T = [a,b] and A = (fin)icin)nen- Then qln € Py if and
only if there exists V = (gin)ic[n),nen satisfying the following conditions:

(i) (¥n) (Vi € [n]) gi,n is nondecreasing,
(i) (Vn) (Vi € [n]) gin(b) = g1.n(b),

such that qlA = qlg.

Proof. (=) Let us fix n. Let e, = qSx ) = Ai_, fin(b). Therefore, as

(n
ala € Prnay, for all x € I" it holds gl (x) < e,,. As a consequence,

n

ala(x) = /\ fz‘,n(x(nﬂdrl)) =

1=1 3

(fi,n(x(nfiJrl)) A en) .

.

1

Please note that, as gl, is nondecreasing, we have (Vx € I") (Vi € [n])
gla(x) <qla((n— z) 0,1 % 1(;)), because (T(n), ..., z1)) < ((n—10) % b,i* x(3;).
We therefore have gl (x) > fj n(2(—i+1)), where 1 < < j < n. However, by
definition, for each x there exists k € [n] for which qlA(x) = fr.n(zm—k41))-
Thus,

qla(x) =ala((n —1) xb, 1))
Adla((n—2)*b,2 % x(2)

A ala((n—mn)*b,n*xm).

Consequently,
qla(x) = /\ /\ fjn(T(n-it1)) Nen
i=1 \j=i
We may thus set g; () := /\J fin(x) Ney, for all i € [n]. We see that g1, =
. j gn,n;, and gl,n(b) == 8n, ﬂ(b) = €En.

We will show that each g;, is nondecreasing. Assume otherwise. Let there
exist ¢ and a < x < y < bsuch that g; ,(z) > gin(y). We have qSy ((n —14) *b, i *
x) =gin(x) >qSg((n —4) *b,i*xy) = g; n(y), a contradiction.

(«=) Trivial. O
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Please note that, clearly, whenever Vv fulfills all the above conditions then it
holds imgqly, = Up—; (Ul imggin).

Now let us find out when a nondecreasing quasi-I-statistic is arity-monotonic.

Theorem 3. Let [ = [a,b] and A = (f; n)icm)nen be such that (Yn) (Vi € [n])
fin is nondecreasing, f; ,(b) = f1,(b), and f1, = --- 2, . Then qla € Pam)
if and only if (Yn) (Vi € [n]) fin = fins1, and fop1 nt1(a) > f10(0).

Proof. (=) We have (Vx € 1) gl (x) = f1,1(x). Moreover, gl (z,a) = f1 2(z) A
fa2(a). Therefore, qla(x) < qla(z,a) if fa2(a) > fi11(b) (when = = b) and
fio = fi1.

Fix n. gla(n*b) < qla(n *b,a) implies that f,41 n41(a) > f1,(0) =--- =
fr,n(b). Now take arbitrary x € I". gla(2(n), (n — 1) ¥ a) < qla(z(n), (n) * a)
implies that fi , < f1 .41 (note that, according to the assumption, fi ,,41(a) <
- < fn+1,n+1(a))' For qIA(x(n)vx(n—l)a (TL—2)*(L) < qlA(x(n)a L(n—-1)» (n_]-)*a’)
to hold for any b > x(,) > x(,—1) > a, we must have additionally fs , < f2,41.
By considering the remaining n — 2 terms of x we approach the condition (Vi €
n]) fin = fint1-

(«<=) Trivial. O

4 The Relationship Between the Two Classes

We are obviously interested in the relationship between the nondecreasing, arity-
monotonic quasi-I-statistics and effort-dominating aggregation operators. It turns
out that all effort-dominating aggregation operators belong to the class of quasi-
I-statistics.

Theorem 4. Let F € Pq) and I = [a,b]. Then there exists N = (i n)ic[n],nen
such that ql5 = F.

Proof. Take any F € P(eq). For any n and i € [n], let [;,, := min{u“(’nfiﬂ) :
ln’| = n}, and w;pn == max{pf, ;. : |u"] = n}. As M(F) is a chain w.r.t. <
and F € P(nd) N P(am) n 'P(Sym), we have li,n < Ujn < li,n+1-

Let us first consider restriction of F to I'. For any x(1) € I we have:
F(z)) = max{v: ply < 2q),[p"] =1}
= f171(x(1)).
Note that f; ; is nondecreasing.

Furthermore, for b > T(2) = T(1) = a it holds:

(max{v : Hay < T(2)5 |p?| =2} for T2 > 12
F(z(2),2(1)) = ¢ A max{v: ufy) <z, [p’|=2})  and zg) > lap,
fii(z (2) ) otherwise,
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which may be written as:

Flz), 7)) = fLa(@2) AMaa(z()),
where:

[ fia(z) for z(2) <12,
fl,?(x(Q)) - {max{v . ,U&) < x(2), |Mv| — 2} Otherwise,

fpa(z) = fi1(ui) for x(1) <22,
2217W) = | max{v : fyy < ). |1’ = 2} otherwise.

Note that both f; 2 and fs 2 are nondecreasing, f1 1 < f12 < fa2, f1 2(b) = f22(b),
and f272(a) 2 fl,l(b) = f1,1(u171).
Now for n =3, let b > T(3) > T(2) = Ty = a1t holds:
(max{v sy S T(3), |u?| =3} for T3y > 13
A max{v: pufy < x9), |pn’| =3 and x(g) > lo 3,
Flz@) 2@, 20) = { oy =@ |Mv| _ ) @
A max{v: pfy) <z, Bt = 3})  and x> 33,
f172($(3)) A\ fgg(.]?(g)) otherwise,
which is equivalent to:

Flo@y, 22y, 71)) = f1,3(x3)) Afas(ze) Afss(za)),

where
[ i) for x(3) <13,
fia3(z@m) = {max{v t gy < @(3), || = 3} otherwise,
[ faa(z(2)) for z(5) < la3,
f2,3 (iC(Q)) - {max{v . ,U&) < x(2), |Mv| — 3} Otherwise,

fos(er)) = f12(u12) for z(1) <l33,
331 W) = | max{v : f(y < (). |u’| = 3} otherwise.

By applying similar reasoning for any n > 3, we approach the equation

n

F(x(ny, o)) = /\ fin(Tn—it1))s
i=1
where for ¢ < n we have
o (Tsan) = fin—1(T(n—it1)) for z(n—it1) < lin,
in i n=i+1)) =\ max{v : Hn—ir1) < T(n—it1)s |17 = n} otherwise,

and

o (m0) = fin—1(ui,n-1) for x(1y <lnn,
wr )T maxfw : pfyy < @y, [p| = n} otherwise.
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This formula generates each f; ,, being nondecreasing, fi, = -+ X f, 5, fin—1 =
fin, fin(b) = f1,(b), and f, ,(a) > f1 ,—1(b), thus F is a nondecreasing, arity-
monotonic quasi-I-statistic, which completes the proof. O

Ezample 5. By the construction above, we have:
) ANy (A Z—ipny) V (i — 1)) if p = oo,
yIn) = n . . .
Ny ((n/\ Q/x]é)n—iﬂ) + (i — 1)P) V(i — 1)) if p e [1,00).
O

Interestingly, if we are given an already nondecreasingly-sorted input vector
x € I" and an effort-dominating impact function F for which the value max{v :
H(n—it1) < T(n—it1),|p’| = n} may be computed in O(1)-time for all i,n (just

rp(T1, ...

as in Example 5) then F(x) may be computed in O(n)-time.

On the other hand, not each gl € Pq) N Pram) belongs to Peq.

Ezample 6. Let I = [0,2] and A = (fin)icin),nen be such that fi; = [z],
fia(x) = z, fa2(z) = 2, and (Vn > 3) (Vi € [n]) fin(x) = 2. We see that
ala € Plem) NPnd) N Plam)- However, e.g. pu° = (0) < pu0° = (0.5,0) 4 p* = (1).
Therefore, M(ql,) is not a chain w.r.t. <, and hence gl & Peq)- O

For the sake of completeness, we shall show which triangles of functions generate
effort-dominating quasi-I-statistics.

Theorem 5. Let [ = [a,b] and A = (f; n)icm)nen be such that (Vn) (Vi € [n])
fia" is nondecreaSing: fl,n(b) = fl,n(b)y fl,n == fn,n; and qIA S P(am)- Then
ala € Peay if and only if

(Vn) (Vi € [n]) (Ve < uipn) finti(x) =fin(z),
where u; , = min{y : f;,(y) = f; () }.

Proof. (=) Assume the opposite. Take the smallest n and the smallest i € [n]
for which there exists x < u; , such that f; ,(x) < f; ny1(z). We have 2 cases.

(i) Let (Jy) such that f; ,,(y) = fi n+1(x). As each function is nondecreasing,
y > x holds. But in this case the least element (w.r.t. <) of {x : gls(x) =
fi n+1(z)} does not exist and hence gl is not even effort-measurable.

(ii) Otherwise, we have pfin(®) 4 pyfint1(@) (note that f;,(z),fin41(z) €
imgql 5 ), and therefore M (qlA) is not a chain, a contradiction.

(<) By arity-monotonicity, we have (Vn) (Vi € [n]) f;, < fint1, and
fnt1nt1(a) > f1,(b). Take any v,v" € imgql, such that v < v'. Let us take
the smallest m such that (3z) fi,,,(x) = v and the smallest m’ such that
(Fy) f1,m(y) = v'. Note that, by the assumptions taken, (Vn < m) (Vx € I")
qla(x) < v, and the same holds for m’ and v'. Additionally, we have m < m/.

It holds ;ﬂ(’mel r—j+1) T
min{z : fjn(z) > o'} for j € [m']. But (Vi € [m]) puf, ) < U?;muiﬂ):
because fi,m(“?m_iﬂ)) = fim (u}’m_iﬂ)) and each function is nondecreasing.

Therefore, p¥ < u”', QED. 1

y = min{z : fin(z) > v} for i € [m], and “E{n
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5 Conclusions

In this paper we have shown that all effort-dominating aggregation operators,
among which we may find Gagolewski-Grzegorzewski’s rp-indices [3,4], Hirsch’s
h-index = roo([x]) [9], and Woeginger’s w-index = ry(|x]) [12], are symmetric-
minitive.

Effort-dominating aggregation operators, proposed in [7], have a very in-
tuitive interpretation: their value may be determined by comparing an input
vector with elements of a set of “minimal quality requirements” needed to reach
a particular “quality level”.

Such aggregation operators may be used e.g. in the Producer Assessment
Problem [see 5,7], whose most important instance is the issue of fair ranking of
scientists by means of the number of citations received by their papers.
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