3. Probability Distributions and Simulation Basics
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Preliminaries</td>
<td>1</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Basic probability distributions</td>
<td>1</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Sampling with and without replacement</td>
<td>3</td>
</tr>
<tr>
<td>3.1.3</td>
<td>* Special functions</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Examples</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Conditional statements</td>
<td>11</td>
</tr>
<tr>
<td>3.3.1</td>
<td>if..else</td>
<td>11</td>
</tr>
<tr>
<td>3.3.2</td>
<td>ifelse() function</td>
<td>12</td>
</tr>
<tr>
<td>3.4</td>
<td>Loops</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1</td>
<td>for loop</td>
<td>13</td>
</tr>
<tr>
<td>3.4.2</td>
<td>while loop</td>
<td>13</td>
</tr>
<tr>
<td>3.4.3</td>
<td>repeat loop</td>
<td>14</td>
</tr>
<tr>
<td>3.4.4</td>
<td>A note on efficiency</td>
<td>14</td>
</tr>
<tr>
<td>3.4.5</td>
<td>replicate() function</td>
<td>15</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Info

These tutorials are likely to contain bugs and typos. In case you find any don’t hesitate to [contact us](mailto:contact-us@tutorials.com). Thanks in advance!
3.1. Preliminaries

3.1.1. Basic probability distributions

R has a built-in support for calculating e.g. the values of functions related to the following well-known probability distributions:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Name</th>
<th>Parameters</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin(n, p)</td>
<td>Binomial</td>
<td>(n \in \mathbb{N}, p \in (0, 1))</td>
<td>*binom</td>
</tr>
<tr>
<td>Geom(p)</td>
<td>Geometric</td>
<td>(p \in (0, 1))</td>
<td>*geom</td>
</tr>
<tr>
<td>Hyp(m, n, k)</td>
<td>Hypergeometric</td>
<td>(m, n, k \in \mathbb{N}, k \leq m)</td>
<td>*hyper</td>
</tr>
<tr>
<td>NegBin(n, p)</td>
<td>Negative Binomial</td>
<td>(n \in \mathbb{N}, p \in (0, 1))</td>
<td>*nbinom</td>
</tr>
<tr>
<td>Poi(\lambda)</td>
<td>Poisson</td>
<td>(\lambda > 0)</td>
<td>*pois</td>
</tr>
<tr>
<td>B(a, b)</td>
<td>Beta</td>
<td>(a > 0, b > 0)</td>
<td>*beta</td>
</tr>
<tr>
<td>C(l = 0, s = 1)</td>
<td>Cauchy</td>
<td>(l \in \mathbb{R}, s > 0)</td>
<td>*cauchy</td>
</tr>
<tr>
<td>X^2</td>
<td>Chi-square</td>
<td>(d \in \mathbb{N})</td>
<td>*chisq</td>
</tr>
<tr>
<td>Exp(\lambda = 1)</td>
<td>Exponential</td>
<td>(\lambda > 0)</td>
<td>*exp</td>
</tr>
<tr>
<td>F(d1, d2)</td>
<td>Snedecor’s F</td>
<td>(d_1, d_2 \in \mathbb{N})</td>
<td>*f</td>
</tr>
<tr>
<td>Gamma(a, s)</td>
<td>Gamma</td>
<td>(a > 0, s > 0)</td>
<td>*gamma</td>
</tr>
<tr>
<td>Logis(\mu = 0, s = 1)</td>
<td>Logistic</td>
<td>(\mu \in \mathbb{R}, s > 0)</td>
<td>*logis</td>
</tr>
<tr>
<td>LogN(\mu = 0, \sigma = 1)</td>
<td>Log-normal</td>
<td>(\mu \in \mathbb{R}, \sigma > 0)</td>
<td>*lnorm</td>
</tr>
<tr>
<td>N(\mu = 0, \sigma = 1)</td>
<td>Normal</td>
<td>(\mu \in \mathbb{R}, \sigma > 0)</td>
<td>*norm</td>
</tr>
<tr>
<td>U(a, b)</td>
<td>Uniform</td>
<td>(a < b)</td>
<td>*unif</td>
</tr>
<tr>
<td>t(d)</td>
<td>Student’s t</td>
<td>(d \in \mathbb{N})</td>
<td>*t</td>
</tr>
<tr>
<td>Wei(a, s = 1)</td>
<td>Weibull</td>
<td>(a > 0, s > 0)</td>
<td>*weibull</td>
</tr>
</tbody>
</table>

The function prefix, *, may be one of the following:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>density (PDF) (f(x)) or probability mass function (PMF) (P(X = x))</td>
</tr>
<tr>
<td>p</td>
<td>cumulative probability distribution function (CDF) (F(x) = P(X \leq x))</td>
</tr>
<tr>
<td>q</td>
<td>quantile function (\approx F^{-1}(p))</td>
</tr>
<tr>
<td>r</td>
<td>generation of random deviates</td>
</tr>
</tbody>
</table>

where \(X\) is a random variable.

For convenience, some distributions have default parameters (see the Distribution column). For example, \texttt{pnorm(3)} is the same as \texttt{pnorm(3,0,1)}, i.e. the value of the CDF of the \(N(0,1)\) (standardized normal) distribution at 3.

3.1.1.1. Cumulative distribution function

The value of the CDF, \(F(x)\), of a chosen probability distribution may be calculated by choosing the prefix \texttt{p}, e.g.

\[
\texttt{pnorm(0)} \quad \# \text{ CDF of the standard normal distribution at 0}
\]

\[
\texttt{pnorm(c(1, 2, 3))} \quad \# \text{ CDF of the standard normal distribution at 1,2, and 3}
\]

Further function arguments determine parameters of the distribution, e.g.:
3.1. PRELIMINARIES

\[\text{ppnorm}(0, 2, 1) \] # CDF of the N(2,1) distribution at 0
\[\text{ppois}(10, 3) \] # CDF of the Poi(3) distribution at 10

Also, the so-called \textit{survival function}, defined as \(S(x) = 1 - F(x) = \Pr(X > x) \), may be computed by using the \texttt{lower.tail=FALSE} parameter:

\[\text{ppnorm}(0.2, \text{lower.tail = FALSE}) \] # survival fun. of the std. normal distrib. at 0

Obviously, the above is equivalent to:

\[1 - \text{pnorm}(0.2) \]

3.1.1.2. Density function

The prefix \texttt{d} preceding the distribution identifier stands for a \textit{probability density function} (in case of continuous random variables) or a \textit{probability mass function} (in case of discrete distributions), e.g.:

\[\text{dexp}(0) \] # the value of \(f(0) \), where \(f \) is the PDF of Exp(1)
\[\text{dexp}(0, 0.5, 1) \] # \(f(0), f(0.5), f(1) \) for Exp(0.5)

\[\text{pr} = \text{dbinom}(0:8, 8, 0.25) \] # \(\Pr(X=i) \) for \(X \sim \text{Bin}(8, 1/4) \), \(i=0,1,...,8 \)
\[\text{round(pr, 3)} \] # print the results rounded to 3 decimal places

3.1.1.3. Quantile function

Theoretical quantiles may be calculated using the \texttt{q} prefix. The first argument of each such function is the quantile order, e.g.

\[\text{qt}(0.95, 5) \] # 0.95-quantile of the t distribution with 5 degrees of freedom
\[\text{qt}(0.95, 1, 5, 10, 15) \] # many degrees of freedom at a time
\[\text{qt}(0.95, \text{Inf}) \] # the standard normal distribution
\[\text{qnorm}(0.95) \]
\[\text{qcauchy}(0.95) \]
\[\text{qt}(c(0.95, 0.975, 0.99, 0.995), 5) \] # and what is that?

Last update: December 9, 2012
3.1. PRELIMINARIES

If the selected probability distribution of a random variable \(X \) is not continuous, then the quantile function at \(q \) returns the smallest number \(x \in \text{supp}(X) \), for which \(P(X \leq x) \geq q \), where \(\text{supp}(X) \) is the support of \(X \).

\[
qbinom(c(0.4, 0.5, 0.6), 5, 0.5)
\]

[1] 2 2 3

\[
pbinom(0:5, 5, 0.5) \quad \text{(for comparison)}
\]

[1] 0.03125 0.18750 0.50000 0.81250 0.96875 1.00000

3.1.1.4. Generation of random deviates

The prefix \(\text{r} \) stands for a procedure for generation of (pseudo\(^1\)-)random numbers. The desired number of observations to be generated should be passed as the first function argument, e.g.:

\[
\text{runif}(5) \quad \text{# 5 random observations from the uniform distribution on } [0,1]
\]

[1] 0.93595 0.06763 0.71548 0.24401 0.62898

\[
\text{runif}(10, 0, 5) \quad \text{# 10 random deviates from } U([0,5])
\]

[1] 0.6642 1.0883 3.6624 1.4793 0.3366 3.1328 4.7619 4.9935 0.2220 3.0148

\[
\text{rpois}(20, 4)
\]

[1] 4 7 3 5 8 6 4 2 5 7 5 9 3 3 1 5 4 4

Many useful information on R-built-in pseudo-random number generators may be found in the manual, see ?set.seed.

It is worth noting that a generator may be initialized with a given seed by using the \text{set.seed()} function. This leads to repeatable results, which may be sometimes desirable. By default, the seed is current-time based and hence the generated deviates appear as “random”.

3.1.2. Sampling with and without replacement

To take a random sample (without replacement) of specified size \(n \) from a set \(S \), we call \text{sample}(S, n) \). Sampling with replacement may be done by using additional replace=TRUE parameter.

For example, \(n = 15 \) coin tosses may be simulated by calling:

\[
\text{sample(c("H", "T"), 15, replace = TRUE)}
\]

[1] "H" "H" "H" "T" "H" "T" "H" "H" "H" "H" "H" "T" "H" "H" "T"

The parameter \(n \) may be omitted — then we get a random permutation of a given set, e.g.:

\[
\text{sample(1:10)}
\]

[1] 1 7 5 6 10 8 4 9 2 3

\(^1\)Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method (John von Neumann, 1951). However, such numbers behave just as they were random (with respect to several testable criteria). The reader interested in algorithmic pseudo-random number generators is referred to \([1; 2]\).
3.1.3. * Special functions

3.1.3.1. * Gamma function

The *gamma function* was first defined by Legendre as

\[\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} \, dt, \quad (3.1) \]

for \(x > 0 \).

Here are some of its basic properties.

1. \(\Gamma(1) = 1 \),
2. \(\Gamma(x + 1) = x\Gamma(x) \),
3. \(n \in \mathbb{N} \Rightarrow \Gamma(n) = (n-1)! \),
4. \(\Gamma(x) = \int_0^1 \left(\ln \frac{1}{t} \right)^{x-1} \, dt \).

The \(\Gamma \) function is available in \(\mathbb{R} \) as \texttt{gamma()}.

3.1.3.2. * Euler beta function

The *Euler beta function* is given by:

\[B(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1} \, dt \quad (3.2) \]

for \(x > 0 \) and \(y > 0 \).

It may be shown that the following properties hold.

1. \(B(x, y) = B(y, x) \),
2. \(B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \),
3. \(\binom{n}{k} = \frac{1}{\Gamma(n+1)\Gamma(n-k+1)\Gamma(k+1)} \).

The values of \(B \) may be calculated in \(\mathbb{R} \) by means of the \texttt{beta()} function.

3.1.3.3. * Incomplete and regularized beta functions

The *incomplete beta function* is a generalization of the \(B \) function:

\[B_i(u, x, y) = \int_0^u t^{x-1}(1-t)^{y-1} \, dt \quad (3.3) \]

for \(x > 0, y > 0, u \in [0, 1] \).

Obviously, \(B_i(1, x, y) = B(x, y) \).

The *regularized beta function* is defined as:

\[I(u, x, y) = \frac{B_i(u, x, y)}{B(x, y)} \quad (3.4) \]

for \(x > 0, y > 0 \) and \(u \in [0, 1] \).

It is easily seen that \(I(u, x, y) \) is equivalent to the value of the CDF of the beta \(B(x, y) \) distribution at \(u \). Therefore, it may be calculated with the \texttt{pbeta()} function.
3.2. Examples

Ex. 3.1. Draw the PDF and the CDF of the following distributions: a) \(N(0,1) \), b) \(N(1,1) \), c) \(N(2,1) \).

Solution.

Let us plot the probability density functions for the normal distributions with different location parameters:

```r
x <- seq(-5, 5, by = 0.1)
plot(x, dnorm(x), type = "l", col = 1, ylab = "", main = "")
lines(x, dnorm(x, 1, 1), col = 2)  # adds another curve
lines(x, dnorm(x, 2, 1), col = 4)  # and another one
legend("topleft", c("N(0,1)", "N(1,1)", "N(2,1)"), col = c(1, 2, 4), lty = 1)
```

The plots of the CDFs may be created in a similar way:

```r
x <- seq(-5, 5, by = 0.1)
plot(x, pnorm(x), col = 1, main = "", ylab = "", type = "l")
lines(x, pnorm(x, 1, 1), col = 2)
lines(x, pnorm(x, 2, 1), col = 4)
legend("topleft", c("N(0,1)", "N(1,1)", "N(2,1)"), col = c(1, 2, 4), lty = 1)
```

Last update: December 9, 2012
3.2. EXAMPLES

Ex. 3.2. The height of a group of people is described by the normal distribution with expectation of 173 cm and standard deviation of 6 cm.

1. Calculate the probability that the height of a randomly selected person is less than or equal to 179 cm.
2. Calculate the fraction of people of height between 167 and 180 cm.
3. What is the probability that a person’s height is not less than 181 cm?
4. Calculate the height value not exceeded by 60% of the population.

Solution.
The height of a randomly selected person is described by a random variable \(X \sim N(173, 6) \).

Firstly, we are interested in calculating \(P(X \leq 179) \):

\[
pnorm(179, 173, 6)
\]

[1] 0.8413

Next we determine \(P(167 < X \leq 180) \). However, as \(X \) is a continuous random variable, it holds \(P(X = 167) = 0 \). Thus, it suffices to calculate \(P(167 < X \leq 180) \):

\[
\text{pnorm}(180, 173, 6) - \text{pnorm}(167, 173, 6)
\]

[1] 0.7197

The third question concerns \(P(X \geq 181) = P(X > 181) \):

\[
1 - \text{pnorm}(181, 173, 6) \quad \text{or equivalently:}
\]

[1] 0.09121

\[
\text{pnorm}(181, 173, 6, \text{lower.tail} = \text{F})
\]

[1] 0.09121

Lastly, the \(q_{0.6} \) quantile of the \(N(173, 6) \) distribution is equal to:

\[
\text{qnorm}(0.6, 173, 6)
\]

[1] 174.5

Ex. 3.3. Generate \(n = 100 \) random deviates from the standard normal distribution. Draw a histogram, a kernel density estimator, and the theoretical density. Discuss the results.

Solution.
The solution to this exercise is quite simple:

\[
n <- 100
x <- \text{rnorm}(n) \quad \# \ n \ random \ deviates
\text{hist}(x, \text{prob} = \text{F})
\text{lines(density(x), \text{col} = "blue")}
\text{curve(dnorm(x), \text{from} = -3, \text{to} = 3, \text{col} = "red", \text{add} = \text{F})}
\]

Last update: December 9, 2012
Obviously, another random sample will (almost surely) consist of different observations. Therefore, it is advised to examine the outputs of a few replications of the experiment (by calling the above code several times).

Ex. 3.4. Draw a plot of probability mass functions of the following binomial distributions: Bin(10, 0.25), Bin(100, 0.25), Bin(1000, 0.25).

Solution.
First we calculate $P(X=k)$ for $k=0,1,\ldots,10$ and $X \sim \text{Bin}(10, 0.25)$:

```r
x <- dbinom(0:10, 10, 0.25)
```

We perform similar calculations in case of the other distributions.

```r
y <- dbinom(0:100, 100, 0.25)
z <- dbinom(0:1000, 1000, 0.25)
```

Let us draw the probability mass functions as bar plots.

```r
barplot(x, names.arg = 0:10, main = "Bin(10, 0.25)")
barplot(y, names.arg = 0:100, main = "Bin(100, 0.25)")
barplot(z, names.arg = 0:1000, main = "Bin(1000, 0.25)")
```
3.2. EXAMPLES

Bin(10,0.25)

Bin(100,0.25)

Bin(1000,0.25)

Last update: December 9, 2012
Task
Recall one of the Central Limit Theorems. What do these figures illustrate?

Ex. 3.5. Given a random number generator (RNG) from the uniform distribution on $(0, 1)$, generate random deviates form the Pareto distribution with parameter $a = 2$.

Solution.

Theorem. Let F be the CDF of a continuous random variable X. Then $X = F^{-1}(U)$, where $U \sim U(0, 1)$.

The described method is called inverse transform sampling. It allows for generating random deviates from many distributions by using the $U(0, 1)$ random number generator.

The PDF of a random variable X from the Pareto distribution with shape parameter $a \geq 0$ is defined as

$$f(x) = \frac{a}{x^{a+1}},$$

for $x > 1$. The CDF is given by

$$F(x) = (1 - 1/x^a),$$

and hence

$$F^{-1}(u) = (1 - u)^{-1/a}.$$

Therefore the random variable $F^{-1}(U) = (1 - U)^{-1/2}$, where $U \sim U(0, 1)$, has the Pareto distribution with shape parameter $a = 2$.

The random sample may be generated as follows:

```r
n <- 1000
u <- runif(n)
x <- (1 - u)^(-0.5)
# or: x <- u^(-0.5) # note: 1-u and u has the same distributions
```

Let us draw a histogram, a kernel density estimator, and the theoretical PDF:

```r
hist(x, prob = T, main = NA, ylim = c(0, 1.2), breaks = 100)
lines(density(x), col = "blue")
curve(2/x^3, add = T, col = "red", from = 1)
```
Ex. 3.6. Calculate the area of \(A = \{ (x, y) \in \mathbb{R}^2 : 0 < x < 1; 0 < y < x^2 \} \) using the Monte Carlo Integration method.

Solution.

Note

Monte Carlo Integration. Let \(X_1, Y_1, X_2, Y_2, \ldots \) be independent random variables with the uniform distribution \(U([0,1]) \). For a given continuous function \(f : [0,1] \to [0,1] \) we define

\[
Z_i = 1(Y_i \leq f(X_i)),
\]

where \(1(\cdot) \) is the indicator function. Then, from the strong law of large numbers, it almost surely holds

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Z_i = \int_{0}^{1} f(x) \, dx.
\]

The method was proposed by a Polish mathematician Stanislaw Ulam, who participated in the famous Manhattan Project.

Task

The generalization of this method for different (interval-based) domains and co-domains is left to the reader as an easy exercise.

The area of \(A \) is equal to

\[
\int_A \, dx \, dy = \int_{0}^{1} \left(\int_{0}^{x^2} dy \right) \, dx = \int_{0}^{1} x^2 \, dx = \frac{1}{3}.
\]
Let us calculate its approximate value by the Monte Carlo Integration method. Firstly, we generate a random sample \((U_1,V_1),\ldots,(U_n,V_n)\) from the uniform distribution:

```r
n <- 1000  # the larger the number, the better the approximation
u <- runif(n)
v <- runif(n)
```

Let us plot the points \((U_1,V_1),\ldots,(U_n,V_n)\) and the function \(y = x^2, x \in [0,1]\).

```r
plot(u, v, xlim = c(0, 1), ylim = c(0, 1), pch = ".")
curve(x * x, col = "red", type = "l", lwd = 3, add = T)
```

Then we count the number of points which fall below the graph of \(y = x^2\):

```r
z <- (v <= u * u)  # a logical vector
sum(z)  # recall that TRUE=1 and FALSE=0
## [1] 329
```

Therefore the area is approximately equal to:

```r
mean(z)
## [1] 0.329
```

\[\square \]

3.3. Conditional statements

Conditional statements allow us to branch an algorithm’s control flow. They work in much the same way as their C/C++ versions.

3.3.1. if..else

The syntax of the \texttt{if..else} statement is:

```r
if (Condition)
{
    ... statements ...
}
```
or:

\[
\text{if (Condition) }
\{ \\
\quad \ldots \text{ statements } \ldots \\
\} \text{ else } \{ \\
\quad \ldots \text{ statements } \ldots \\
\}
\]

Note that the `else` keyword must be put in the same line as the `if`-block’s closing brace — otherwise R’s parser will not interpret it correctly.

```r
a <- runif(1)
if (a < 0.5) print("less") else print("more")  # ERROR: unexpected 'else'
```

```r
a <- runif(1)
if (a < 0.5) print("less") else print("more")
## [1] "less"
```

3.3.2. `ifelse()` function

`ifelse()` returns a vector of values chosen among two possibilities according to a given conditioning vector.

Consider the following example.

```r
test <- (1:10)%%2 == TRUE
yes <- rep("yes", 10)
no <- rep("no", 10)
ret <- ifelse(test, yes, no)
ret
## [1] "yes" "no" "yes" "no" "yes" "no" "yes" "no" "yes" "no"
```

Therefore, `ifelse` statement may be considered as a “vectorized” case of `if..else`. It is similar to the C’s ?: operator.

Here is an interesting illustration from the R manual:

```r
x <- c(6:-4)
sqrt(x)  # gives warning
## Warning: NaNs produced
## [1] 2.449 2.236 2.000 1.732 1.414 1.000 0.000 NaN NaN NaN NaN
sqrt(ifelse(x >= 0, x, NA))  # no warning
## [1] 2.449 2.236 2.000 1.732 1.414 1.000 0.000 NA NA NA NA
ifelse(x >= 0, sqrt(x), NA)  # warning - why?
## Warning: NaNs produced
## [1] 2.449 2.236 2.000 1.732 1.414 1.000 0.000 NA NA NA NA
```
3.4. Loops

3.4.1. for loop

The for loop iterates through all elements of a vector. A loop variable is used to control the execution of a given code block.

The syntax is:

```r
for (Variable in Vector) {
    ... statements ...
}
```

statements are performed \(\text{length(Vector)} \) times. In each iteration of the loop, *Variable* is being assigned one of the consecutive values from *Vector*, that is: *Vector[1]*, *Vector[2]*,... This is similar to the *foreach* loop in C#.

Example:

```r
for (i in 1:5) # for each i=1,2,3,4,5
{
    print(i) # print i
}
```

```
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
```

The brackets `{}` may of course be omitted in case of only one statement to be iterated.

```r
for (i in 1:5) print(2^i)
```

```
## [1] 2
## [1] 4
## [1] 8
## [1] 16
## [1] 32
```

3.4.2. while loop

Here is the syntax of the while loop:

```r
while (Condition) {
    ... statements ...
}
```

commands are executed until the *Condition* is false (while *Condition* is true).

Let us find the greatest power of 2 smaller than 100.

```r
i <- 0
while (2^i < 100) {
    i <- i + 1
}
```

```r
print(c(i, 2^i)) # Move back one step (why?)
```

```
## [1] 7 128
```

```r
print(c(i - 1, 2^(i - 1)))
```

```
## [1] 6 64
```
3.4. LOOPS

Details

break breaks out of a loop of any type. The control is transferred to the first statement outside the currently executed loop.

next halts the processing of the current iteration and advances to the next. Both **next** and **break** apply only to the inner-most loop in case of nested loops.

```r
i <- 0
sumEven <- 0
while (i < 10) {
  i <- i + 1
  if (i%%2 == 1)
    next
  print(i)
  sumEven <- sumEven + i
}
## [1] 2
## [1] 4
## [1] 6
## [1] 8
## [1] 10
print(sumEven)
## [1] 30
```

3.4.3. repeat loop

The syntax for the **repeat** loop is as follows.

```r
repeat
{
  ... statements ...
}
```

statements are executed until we **break** out of the loop implicitly (with the **break** statement).

```r
i <- 0
repeat {
  if (2^(i + 1) >= 100)
    break
  i <- i + 1
}
print(c(i, 2^i))
## [1] 6 64
```

3.4.4. A note on efficiency

In many applications, the use of loops in **R** is highly inefficient. We should use other solutions where possible.

Consider the following example:

```r
v <- numeric(10)
for (i in 1:10) v[i] <- 2^i
v
```

Last update: December 9, 2012
We apply a vector (sic!) operator \(^{10}\) times — for each element of \(v\). That is OK in imperative languages like C++. In R (a higher-level language), it would be better to express the above example using only one (optimized for speed) call to \(^{10}\):

\[
v <- 2^{(1:10)}
\]

\[
\text{print}(v) \quad \# \text{operations on vectors only}
\]

Does it really matter? One more example: we want to calculate a vector of numbers \(a_1, \ldots, a_n\) where \(a_i = \left(1 + \frac{1}{i}\right)^i\) (consecutive approximations to the number e).

Compare the run times (returned by \texttt{system.time()}) of the following expressions.

\[
> \text{n} <- 1000000
> \text{a1} <- \text{numeric(n)} \# \text{empty vector of size n}
> \text{system.time(\{ for (i in 1:n) a1[i] <- (1+1/i)^i \})} \quad \# \text{using for loop}
> \text{system.time(\{ a2 <- (1+1/(1:n))^{(1:n)} \})} \quad \# \text{operations on vectors}
\]

The results were as follows (see the \texttt{user} column, which gives the real processing time in seconds\(^2\)):

\[
\begin{align*}
\text{# using the for loop:} & \\
& \text{user} \quad \text{system} \quad \text{elapsed} \\
& 4.320 \quad 0.041 \quad 4.423 \\
\text{# operations on vectors:} & \\
& \text{user} \quad \text{system} \quad \text{elapsed} \\
& 0.172 \quad 0.006 \quad 0.180
\end{align*}
\]

However, some tasks, due their iterative nature, cannot be performed without explicit usage of looping statements.

3.4.5. \texttt{replicate()} function

The \texttt{replicate()} function is designed to perform e.g. some random experiment several times. It returns all results as a vector or a matrix.

It is very convenient and will be often used throughout our course.

Here is its syntax:

\[
\texttt{replicate(HowManyTimes,} \quad \{ \ldots \text{different tasks, e.g. sampling, arithmetic operations etc.} \ldots \quad \text{return the result as a vector (also: a "single" number)} \}
\)

For example:

\[
\text{results} \leftarrow \text{replicate(50,} \quad \{ \text{ \texttt{sample} <- \text{rnorm(10)} \quad \# a random sample from } \text{N}(0,1) \text{ of size 10} \\
\text{ \texttt{sd(sample)}} \quad \# \text{the result of the experiment} \}
\)
\]

\[
\text{results}
\]

\(^2\)The results were obtained on GNU/Linux 2.6.40.6-0.fc15.x86_64 SMP, model name : Intel(R) Core(TM) i5 CPU M 430 2.27GHz, cache size : 3072 KB, MemTotal: 4 GB.
Bibliography
