Submitted: Normalised Clustering Accuracy#

An revised version of a paper Normalised Clustering Accuracy: An Asymmetric External Cluster Validity Measure (in a previous draft called Adjusted Asymmetric Accuracy) is now available on arXiv.

Abstract. There is no, nor will there ever be, single best clustering algorithm, but we would still like to be able to distinguish between methods which work well on certain task types and those that systematically underperform. Clustering algorithms are traditionally evaluated using either internal or external validity measures. Internal measures quantify different aspects of the obtained partitions, e.g., the average degree of cluster compactness or point separability. Yet, their validity is questionable, because the clusterings they promote can sometimes be meaningless. External measures, on the other hand, compare the algorithms’ outputs to the reference, ground truth groupings that are provided by experts. In this paper, we argue that the commonly-used classical partition similarity scores, such as the normalised mutual information, Fowlkes–Mallows, or adjusted Rand index, miss some desirable properties, e.g., they do not identify worst-case scenarios correctly or are not easily interpretable. This makes comparing clustering algorithms across many benchmark datasets difficult. To remedy these issues, we propose and analyse a new measure: a version of the optimal set-matching accuracy, which is normalised, monotonic, scale invariant, and corrected for the imbalancedness of cluster sizes (but neither symmetric nor adjusted for chance).