Publication List (by Year)#

This list is also available as a BibTeX file. Many preprints are available for download here and here. Some recent preprints/drafts are also listed here.

  1. Gagolewski M., Normalised clustering accuracy: An asymmetric external cluster validity measure, Journal of Classification, 2024, in press

  2. Gagolewski M., Cena A., Bartoszuk M., Brzozowski L., Clustering with minimum spanning trees: How good can it be?, Journal of Classification, 2024, in press

  3. Bertoli-Barsotti L., Gagolewski M., Siudem G., Żogała-Siudem B., Gini-stable Lorenz curves and their relation to the generalised Pareto distribution, Journal of Informetrics 18(2), 101499, 2024, DOI:10.1016/j.joi.2024.101499

  4. Wu J-Z., Beliakov G., James S., Gagolewski M., Random generation of linearly constrained fuzzy measures and domain coverage performance evaluation, Information Sciences 659, 120080, 2024, DOI:10.1016/j.ins.2023.120080

  5. Gagolewski M., Deep R Programming, Melbourne, v1.0.0 edition, 2023, 456 pp., 🔓, DOI:10.5281/zenodo.7490464, URL:https://deepr.gagolewski.com/

  6. Gagolewski M., Cena A., James S., Beliakov G., Hierarchical clustering with OWA-based linkages, the Lance–Williams formula, and dendrogram inversions, Fuzzy Sets and Systems 473, 108740, 2023, DOI:10.1016/j.fss.2023.108740

  7. Boczek M., Gagolewski M., Kaluszka M., Okolewski A., A benchmark-type generalization of the Sugeno integral with applications in bibliometrics, Fuzzy Sets and Systems 466, 108479, 2023, DOI:10.1016/j.fss.2023.01.014

  8. Żogała-Siudem B., Cena A., Siudem G., Gagolewski M., Interpretable reparameterisations of citation models, Journal of Informetrics 17(1), 101355, 2023, DOI:10.1016/j.joi.2022.101355

  9. Gagolewski M., Minimalist Data Wrangling with Python, Melbourne, v1.0.3 edition, 2023, 442 pp., 🔓, DOI:10.5281/zenodo.6451068, URL:https://datawranglingpy.gagolewski.com/

  10. Gagolewski M., A framework for benchmarking clustering algorithms, SoftwareX 20, 101270, 2022, DOI:10.1016/j.softx.2022.101270, URL:https://clustering-benchmarks.gagolewski.com/

  11. Siudem G., Nowak P., Gagolewski M., Power laws, the Price Model, and the Pareto type-2 distribution, Physica A: Statistical Mechanics and its Applications 606, 128059, 2022, DOI:10.1016/j.physa.2022.128059

  12. Gagolewski M., stringi: Fast and portable character string processing in R, Journal of Statistical Software 103(2), 1–59, 2022, DOI:10.18637/jss.v103.i02, URL:https://stringi.gagolewski.com/

  13. Beliakov G., Gagolewski M., James S., Reduction of variables and constraints in fitting antibuoyant fuzzy measures to data using linear programming, Fuzzy Sets and Systems 451, 266–284, 2022, DOI:10.1016/j.fss.2022.06.025

  14. Geras A., Siudem G., Gagolewski M., Time to vote: Temporal clustering of user activity on Stack Overflow, Journal of the Association for Information Science and Technology 73(12), 1681–1691, 2022, DOI:10.1002/asi.24658

  15. Gagolewski M., Żogała-Siudem B., Siudem G., Cena A., Ockham’s index of citation impact, Scientometrics 127, 2829–2845, 2022, DOI:10.1007/s11192-022-04345-2

  16. Mrowiński M., Gagolewski M., Siudem G., Accidentality in journal citation patterns, Journal of Informetrics 16(4), 101341, 2022, DOI:10.1016/j.joi.2022.101341

  17. Cena A., Gagolewski M., Siudem G., Żogała-Siudem B., Validating citation models by proxy indices, Journal of Informetrics 16(2), 101267, 2022, DOI:10.1016/j.joi.2022.101267

  18. Gagolewski M., Algorytmy i postawy programowania w języku C++ (Introduction to Algorithms and Programming in C++), Melbourne, v1.2.0 edition, 2022, 209 pp., 🇵🇱 🔓, DOI:10.5281/zenodo.6451054, URL:https://github.com/gagolews/aipp

  19. Gagolewski M., Bartoszuk M., Cena A., Are cluster validity measures (in)valid?, Information Sciences 581, 620–636, 2021, DOI:10.1016/j.ins.2021.10.004, URL:https://github.com/gagolews/optim_cvi

  20. Beliakov G., Gagolewski M., James S., Hierarchical data fusion processes involving the Möbius representation of capacities, Fuzzy Sets and Systems 433, 1–21, 2022, DOI:10.1016/j.fss.2021.02.006

  21. Bartoszuk M., Gagolewski M., T-norms or t-conorms? How to aggregate similarity degrees for plagiarism detection, Knowledge-Based Systems 231, 107427, 2021, DOI:10.1016/j.knosys.2021.107427

  22. Lasek J., Gagolewski M., Interpretable sports team rating models based on the gradient descent algorithm, International Journal of Forecasting 37(3), 1061–1071, 2021, DOI:10.1016/j.ijforecast.2020.11.008

  23. Gagolewski M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15, 100722, 2021, DOI:10.1016/j.softx.2021.100722, URL:https://genieclust.gagolewski.com/

  24. Pérez-Fernández R., Gagolewski M., De Baets B., On the aggregation of compositional data, Information Fusion 73, 103–110, 2021, DOI:10.1016/j.inffus.2021.02.021

  25. Beliakov G., Gagolewski M., James S., DC optimization for constructing discrete Sugeno integrals and learning nonadditive measures, Optimization 69(12), 2515–2534, 2020, DOI:10.1080/02331934.2019.1705300

  26. Bartoszuk M., Gagolewski M., SimilaR: R Code Clone and Plagiarism Detection, R Journal 12(1), 367–385, 2020, DOI:10.32614/RJ-2020-017, URL:https://CRAN.R-project.org/package=SimilaR

  27. Siudem G., Żogała-Siudem B., Cena A., Gagolewski M., Three dimensions of scientific impact, Proceedings of the National Academy of Sciences of the United States of America (PNAS) 117, 13896–13900, 2020, DOI:10.1073/pnas.2001064117

  28. Coroianu L., Fullér R., Gagolewski M., James S., Constrained ordered weighted averaging aggregation with multiple comonotone constraints, Fuzzy Sets and Systems 395, 21–39, 2020, DOI:10.1016/j.fss.2019.09.006

  29. Cena A., Gagolewski M., Genie+OWA: Robustifying hierarchical clustering with OWA-based linkages, Information Sciences 520, 324–336, 2020, DOI:10.1016/j.ins.2020.02.025

  30. Gagolewski M., Pérez-Fernández R., De Baets B., An inherent difficulty in the aggregation of multidimensional data, IEEE Transactions on Fuzzy Systems 28, 602–606, 2020, DOI:10.1109/TFUZZ.2019.2908135

  31. Beliakov G., Gagolewski M., James S., Robust fitting for the Sugeno integral with respect to general fuzzy measures, Information Sciences 514, 449–461, 2020, DOI:10.1016/j.ins.2019.11.024

  32. Geras A., Siudem G., Gagolewski M., Should we introduce a dislike button for academic papers?, Journal of the Association for Information Science and Technology 71(2), 221–229, 2020, DOI:10.1002/ASI.24231

  33. Coroianu L., Gagolewski M., Grzegorzewski P., Piecewise linear approximation of fuzzy numbers: Algorithms, arithmetic operations and stability of characteristics, Soft Computing 23(19), 9491–9505, 2019, DOI:10.1007/s00500-019-03800-2, URL:https://CRAN.R-project.org/package=FuzzyNumbers

  34. Beliakov G., Gagolewski M., James S., Aggregation on ordinal scales with the Sugeno integral for biomedical applications, Information Sciences 501, 377–387, 2019, DOI:10.1016/j.ins.2019.06.023

  35. Pérez-Fernández R., De Baets B., Gagolewski M., A taxonomy of monotonicity properties for the aggregation of multidimensional data, Information Fusion 52, 322–334, 2019, DOI:10.1016/j.inffus.2019.05.006

  36. Coroianu L., Gagolewski M., Penalty-based data aggregation in real normed vector spaces, in: Halaš R. et al. (eds.), New Trends in Aggregation Theory, Springer, 2019, pp. 160–171, DOI:10.1007/978-3-030-19494-9_15

  37. Gagolewski M., James S., Beliakov G., Supervised learning to aggregate data with the Sugeno integral, IEEE Transactions on Fuzzy Systems 27(4), 810–815, 2019, DOI:10.1109/TFUZZ.2019.2895565

  38. Beliakov G., Gagolewski M., James S., Pace S., Pastorello N., Thilliez E., Vasa R., Measuring traffic congestion: An approach based on learning weighted inequality, spread and aggregation indices from comparison data, Applied Soft Computing 67, 910–919, 2019, DOI:10.1016/j.asoc.2017.07.014

  39. Halaš R., Gagolewski M., Mesiar R. (eds.), New Trends in Aggregation Theory, Springer, 2019, 348 pp., DOI:10.1007/978-3-030-19494-9

  40. Lasek J., Gagolewski M., The efficacy of league formats in ranking teams, Statistical Modelling 18(5–6), 411–435, 2018, DOI:10.1177/1471082X18798426

  41. Beliakov G., Gagolewski M., James S., Least median of squares (LMS) and least trimmed squares (LTS) fitting for the weighted arithmetic mean, in: Medina J. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations, Springer, 2018, pp. 367–378, DOI:10.1007/978-3-319-91476-3_31

  42. Gagolewski M., James S., Fitting symmetric fuzzy measures for discrete Sugeno integration, in: Kacprzyk J. et al. (eds.), Advances in Fuzzy Logic and Technology 2017, Springer, 2018, pp. 104–116, DOI:10.1007/978-3-319-66824-6_10

  43. Bartoszuk M., Gagolewski M., Binary aggregation functions in software plagiarism detection, in: Proc. FUZZ-IEEE’17, IEEE, 2017, no. 8015582, DOI:10.1109/FUZZ-IEEE.2017.8015582

  44. Cena A., Gagolewski M., OWA-based linkage and the Genie correction for hierarchical clustering, in: Proc. FUZZ-IEEE’17, IEEE, 2017, no. 8015652, DOI:10.1109/FUZZ-IEEE.2017.8015652

  45. Gagolewski M., Penalty-based aggregation of multidimensional data, Fuzzy Sets and Systems 325, 4–20, 2017, DOI:10.1016/j.fss.2016.12.009

  46. Ferraro M., Giordani P., Vantaggi B., Gagolewski M., Gil M., Grzegorzewski P., Hryniewicz O. (eds.), Soft Methods for Data Science, Springer, 2017, 535 pp., DOI:10.1007/978-3-319-42972-4

  47. Gagolewski M., Bartoszuk M., Cena A., Przetwarzanie i analiza danych w języku Python (Data Processing and Analysis in Python), Wydawnictwo Naukowe PWN, Warsaw, 2016, 369 pp., 🇵🇱, URL:https://github.com/gagolews/Analiza_danych_w_jezyku_Python

  48. Gagolewski M., Programowanie w języku R. Analiza danych, obliczenia, symulacje (R Programming. Data Analysis, Computing, Simulations), Wydawnictwo Naukowe PWN, Warsaw, 2nd edition, 2016, 550 pp., 🇵🇱, URL:https://github.com/gagolews/Programowanie_w_jezyku_R

  49. Mesiar R., Gagolewski M., H-index and other Sugeno integrals: Some defects and their compensation, IEEE Transactions on Fuzzy Systems 24(6), 1668–1672, 2016, DOI:10.1109/TFUZZ.2016.2516579

  50. Beliakov G., Gagolewski M., James S., Penalty-based and other representations of economic inequality, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24(Suppl.1), 1–23, 2016, DOI:10.1142/S0218488516400018

  51. Gagolewski M., Cena A., Bartoszuk M., Hierarchical clustering via penalty-based aggregation and the Genie approach, in: Torra V. et al. (eds.), Modeling Decisions for Artificial Intelligence, Springer, 2016, pp. 191–202, DOI:10.1007/978-3-319-45656-0_16

  52. Gagolewski M., Bartoszuk M., Cena A., Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm, Information Sciences 363, 8–23, 2016, DOI:10.1016/j.ins.2016.05.003, URL:https://genieclust.gagolewski.com/

  53. Cena A., Gagolewski M., Fuzzy k-minpen clustering and k-nearest-minpen classification procedures incorporating generic distance-based penalty minimizers, in: Carvalho J. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Part II, Springer, 2016, pp. 445–456, DOI:10.1007/978-3-319-40581-0_36

  54. Bartoszuk M., Beliakov G., Gagolewski M., James S., Fitting aggregation functions to data: Part I – Linearization and regularization, in: Carvalho J. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Part II, Springer, 2016, pp. 767–779, DOI:10.1007/978-3-319-40581-0_62

  55. Bartoszuk M., Beliakov G., Gagolewski M., James S., Fitting aggregation functions to data: Part II – Idempotization, in: Carvalho J. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Part II, Springer, 2016, pp. 780–789, DOI:10.1007/978-3-319-40581-0_63

  56. Lasek J., Szlavik Z., Gagolewski M., Bhulai S., How to improve a team’s position in the FIFA ranking – A simulation study, Journal of Applied Statistics 43(7), 1349–1368, 2016, DOI:10.1080/02664763.2015.1100593

  57. Żogała-Siudem B., Siudem G., Cena A., Gagolewski M., Agent-based model for the bibliometric h-index – Exact solution, European Physical Journal B 89(21), 2016, DOI:10.1140/epjb/e2015-60757-1

  58. Bartoszuk M., Gagolewski M., Detecting similarity of R functions via a fusion of multiple heuristic methods, in: Alonso J., Bustince H., Reformat M. (eds.), Proc. IFSA/EUSFLAT’15, Atlantis Press, 2015, pp. 419–426, DOI:10.2991/ifsa-eusflat-15.2015.61

  59. Cena A., Gagolewski M., Mesiar R., Problems and challenges of information resources producers’ clustering, Journal of Informetrics 9(2), 2015, DOI:10.1016/j.joi.2015.02.005

  60. Cena A., Gagolewski M., A K-means-like algorithm for informetric data clustering, in: Alonso J., Bustince H., Reformat M. (eds.), Proc. IFSA/EUSFLAT’15, Atlantis Press, 2015, pp. 536–543, DOI:10.2991/ifsa-eusflat-15.2015.77

  61. Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, Warsaw, 2015, 290 pp., 🔓, URL:https://github.com/gagolews/datafusion

  62. Cena A., Gagolewski M., OM3: Ordered maxitive, minitive, and modular aggregation operators – Axiomatic and probabilistic properties in an arity-monotonic setting, Fuzzy Sets and Systems 264, 138–159, 2015, DOI:10.1016/j.fss.2014.04.001

  63. Gagolewski M., Sugeno integral-based confidence intervals for the theoretical h-index, in: Grzegorzewski P. et al. (eds.), Strengthening Links Between Data Analysis and Soft Computing, Springer, 2015, pp. 233–240, DOI:10.1007/978-3-319-10765-3_28

  64. Gagolewski M., Normalized WD\(_p\)WAM and WD\(_p\)OWA spread measures, in: Alonso J., Bustince H., Reformat M. (eds.), Proc. IFSA/EUSFLAT’15, Atlantis Press, 2015, pp. 210–216, DOI:10.2991/ifsa-eusflat-15.2015.32

  65. Gagolewski M., Spread measures and their relation to aggregation functions, European Journal of Operational Research 241(2), 469–477, 2015, DOI:10.1016/j.ejor.2014.08.034

  66. Gagolewski M., Lasek J., The use of fuzzy relations in the assessment of information resources producers’ performance, in: Proc. 7th IEEE International Conference Intelligent Systems IS’2014, Vol. 2: Tools, Architectures, Systems, Applications, Springer, 2015, pp. 289–300, DOI:10.1007/978-3-319-11310-4_25

  67. Gagolewski M., Lasek J., Learning experts’ preferences from informetric data, in: Alonso J., Bustince H., Reformat M. (eds.), Proc. IFSA/EUSFLAT’15, Atlantis Press, 2015, pp. 484–491, DOI:10.2991/ifsa-eusflat-15.2015.70

  68. Lasek J., Gagolewski M., Estimation of tournament metrics for association football league formats, in: Selected problems in information technologies (Proc. ITRIA’15 vol. 2), Institute of Computer Science, Polish Academy of Sciences, 2015, pp. 67–78

  69. Lasek J., Gagolewski M., The winning solution to the AAIA’15 Data Mining Competition: Tagging firefighter activities at a fire scene, in: Ganzha M., Maciaszek L., Paprzycki M. (eds.), Proc. FedCSIS’15, IEEE, 2015, pp. 375–380, DOI:10.15439/2015F418

  70. Cena A., Gagolewski M., Clustering and aggregation of informetric data sets, in: Computational methods in data analysis (Proc. ITRIA’15 vol. 1), Institute of Computer Science, Polish Academy of Sciences, 2015, pp. 5–26

  71. Gagolewski M., Some issues in aggregation of multidimensional data, in: Baczyński M., De Baets B., Mesiar R. (eds.), Proc. 8th International Summer School on Aggregation Operators (AGOP 2015), University of Silesia, 2015, pp. 127–132

  72. Cena A., Gagolewski M., Aggregation and soft clustering of informetric data, in: Baczyński M., De Baets B., Mesiar R. (eds.), Proc. 8th International Summer School on Aggregation Operators (AGOP 2015), University of Silesia, 2015, pp. 79–84

  73. Grzegorzewski P., Gagolewski M., Hryniewicz O., Gil M. (eds.), Strengthening Links Between Data Analysis and Soft Computing, Springer, 2015, 294 pp., DOI:10.1007/978-3-319-10765-3

  74. Coroianu L., Gagolewski M., Grzegorzewski P., Adabitabar Firozja M., Houlari T., Piecewise linear approximation of fuzzy numbers preserving the support and core, in: Laurent A. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Part II, Springer, 2014, pp. 244–254, DOI:10.1007/978-3-319-08855-6_25

  75. Gagolewski M., Mesiar R., Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem, Information Sciences 263, 166–174, 2014, DOI:10.1016/j.ins.2013.12.004

  76. Bartoszuk M., Gagolewski M., A fuzzy R code similarity detection algorithm, in: Laurent A. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Part III, Springer, 2014, pp. 21–30, DOI:10.1007/978-3-319-08852-5_3

  77. Grzegorzewski P., Gagolewski M., Bobecka-Wesołowska K., Wnioskowanie statystyczne z wykorzystaniem środowiska R (Statistical Inference with R), Politechnika Warszawska, Warsaw, 2014, 183 pp., 🇵🇱 🔓

  78. Gagolewski M., On the relationship between symmetric maxitive, minitive, and modular aggregation operators, Information Sciences 221, 170–180, 2013, DOI:10.1016/j.ins.2012.09.005

  79. Gagolewski M., Dębski M., Nowakiewicz M., Efficient algorithm for computing certain graph-based monotone integrals: The \(l_p\)-indices, in: Mesiar R., Bacigal T. (eds.), Proc. Uncertainty Modeling, STU Bratislava, 2013, pp. 17–23

  80. Cena A., Gagolewski M., OM3: Ordered maxitive, minitive, and modular aggregation operators – Part I: Axiomatic analysis under arity-dependence, in: Bustince H. et al. (eds.), Aggregation Functions in Theory and in Practise, Springer, 2013, pp. 93–103, DOI:10.1007/978-3-642-39165-1_13

  81. Cena A., Gagolewski M., OM3: Ordered maxitive, minitive, and modular aggregation operators – Part II: A simulation study, in: Bustince H. et al. (eds.), Aggregation Functions in Theory and in Practise, Springer, 2013, pp. 105–115, DOI:10.1007/978-3-642-39165-1_14

  82. Coroianu L., Gagolewski M., Grzegorzewski P., Nearest piecewise linear approximation of fuzzy numbers, Fuzzy Sets and Systems 233, 26–51, 2013, DOI:10.1016/j.fss.2013.02.005, URL:https://CRAN.R-project.org/package=FuzzyNumbers

  83. Gagolewski M., Scientific impact assessment cannot be fair, Journal of Informetrics 7(4), 792–802, 2013, DOI:10.1016/j.joi.2013.07.001

  84. Gagolewski M., Statistical hypothesis test for the difference between Hirsch indices of two Pareto-distributed random samples, in: Kruse R. et al. (eds.), Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Springer, 2013, pp. 359–367, DOI:10.1007/978-3-642-33042-1_39

  85. Gagolewski M., Mesiar R., Aggregating different paper quality measures with a generalized h-index, Journal of Informetrics 6(4), 566–579, 2012, DOI:10.1016/j.joi.2012.05.001

  86. Gagolewski M., On the relation between effort-dominating and symmetric minitive aggregation operators, in: Greco S. et al. (eds.), Advances in Computational Intelligence, Part III, Springer, 2012, pp. 276–285, DOI:10.1007/978-3-642-31718-7_29

  87. Gagolewski M., Bibliometric impact assessment with R and the CITAN package, Journal of Informetrics 5(4), 678–692, 2011, DOI:10.1016/j.joi.2011.06.006, URL:https://CRAN.R-project.org/package=CITAN

  88. Gagolewski M., Grzegorzewski P., Axiomatic characterizations of (quasi-) L-statistics and S-statistics and the Producer Assessment Problem, in: Galichet S. et al. (eds.), Proc. EUSFLAT/LFA’11, Atlantis Press, 2011, pp. 53–58, DOI:10.2991/eusflat.2011.112

  89. Gagolewski M., Grzegorzewski P., Possibilistic analysis of arity-monotonic aggregation operators and its relation to bibliometric impact assessment of individuals, International Journal of Approximate Reasoning 52(9), 1312–1324, 2011, DOI:10.1016/j.ijar.2011.01.010

  90. Rowiński T., Gagolewski M., Internet a kryzys, in: Jankowska M., Starzomska M. (eds.), Kryzys: Pułapka czy szansa?, WN Akapit, Warsaw, 2011, pp. 211–224, in Polish

  91. Gagolewski M., Grzegorzewski P., Arity-monotonic extended aggregation operators, in: Hüllermeier E. et al. (eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, 2010, pp. 693–702, DOI:10.1007/978-3-642-14055-6_73

  92. Gagolewski M., Grzegorzewski P., S-statistics and their basic properties, in: Borgelt C. et al. (eds.), Combining Soft Computing and Statistical Methods in Data Analysis, Springer, 2010, pp. 281–288, DOI:10.1007/978-3-642-14746-3_35

  93. Gagolewski M., Grzegorzewski P., Metody i problemy naukometrii (Methods and problems of scientometrics), in: Rowiński T., Tadeusiewicz R. (eds.), Psychologia i informatyka. Synergia i kontradykcje, Wyd. UKSW, Warsaw, 2010, pp. 103–125, in Polish

  94. Gagolewski M., Grzegorzewski P., O pewnym uogólnieniu indeksu Hirscha, in: Kawalec P., Lipski P. (eds.), Kadry i infrastruktura nowoczesnej nauki: Teoria i praktyka, Proc. 1st Intl. Conf. Zarządzanie Nauką, Wydawnictwo Lubelskiej Szkoły Biznesu, Lublin, 2009, pp. 15–29, in Polish

  95. Gagolewski M., Grzegorzewski P., Possible and necessary h-indices, in: Carvalho J. et al. (eds.), Proc. IFSA/EUSFLAT’09, IFSA, 2009, pp. 1691–1695

  96. Gagolewski M., Grzegorzewski P., A geometric approach to the construction of scientific impact indices, Scientometrics 81(3), 617–634, 2009, DOI:10.1007/s11192-008-2253-y

  97. Rowiński T., Gagolewski M., Preferencje i postawy wobec pomocy online (Attitudes towards online counselling and psychotherapy), Studia Psychologica UKSW 7, 195–210, 2007, in Polish