Recommended literature for data science students (postgraduate)¶
This list is a work in progress.
Last update: 2024-11-12.
See also: the undergraduate version.
Statistics, probability, machine learning, and the like¶
Aggarwal, C.C., Data Mining. The Textbook, Springer, 2015
Arnold, B.C., Pareto Distributions, CRC Press, 2015
Bishop, C., Pattern Recognition and Machine Learning, Springer-Verlag, 2006
Devroye, L., Györfi, L., Lugosi, G., A Probabilistic Theory of Pattern Recognition, Springer Verlag, 1996
Murphy, K.P., Probabilistic Machine Learning: Advanced Topics, MIT Press, 2022
Leskovec, J., Rajaraman, A., Ullman, J., Mining of Massive Datasets
Random graphs / Complex networks¶
Easley, D., Kleinberg, J., Networks, Crowds, and Markets: Reasoning About a Highly Connected World
Montanari, A., Mézard, M., Information, Physics, and Computation
van der Hofstad, R., Random Graphs and Complex Networks
Durrett, R., Dynamics on Graphs
Newman, M.E.J., Networks, Oxford University Press, 2018
Natural language processing¶
Aggarwal, C.C., Machine Learning for Text, Springer, 2022
Jurafsky, D., Martin, J.H., Speech and Language Processing (3rd ed. draft)
Eisenstein, J., Natural Language Processing
Goldberg, Y., A Primer on Neural Network Models for Natural Language Processing